Merlintxu commited on
Commit
c2fc6b8
·
1 Parent(s): 52d2c96

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -19
app.py CHANGED
@@ -1,42 +1,44 @@
 
1
  import gradio as gr
2
  import spacy
3
- from transformers import GPT2Tokenizer, GPT2LMHeadModel
4
 
5
  nlp = spacy.load('es_core_news_sm')
6
-
7
- # Load pre-trained model tokenizer (vocabulary)
8
- tokenizer = GPT2Tokenizer.from_pretrained('datificate/gpt-2-small-spanish')
9
-
10
- # Load pre-trained model (weights)
11
- model = GPT2LMHeadModel.from_pretrained('datificate/gpt-2-small-spanish')
12
 
13
  pos_tags = ['ADJ', 'ADP', 'ADV', 'AUX', 'CONJ', 'DET', 'INTJ', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X']
14
 
15
- sentence = ""
16
- tagged_words = []
17
 
18
  def generate_sentence():
19
- global sentence, tagged_words
20
- # We will generate the text manually to control the special tokens
21
- input_ids = tokenizer.encode('', return_tensors='pt')
22
- output = model.generate(input_ids, max_length=50)
23
- sentence = tokenizer.decode(output[0], skip_special_tokens=True)
24
  tagged_words = analyze_sentence(sentence)
 
 
25
  return sentence, [word for word, _ in tagged_words]
26
 
27
  def analyze_sentence(sentence):
28
  doc = nlp(sentence)
29
- tagged_words = [(token.text, token.pos_) for token in doc]
30
- return tagged_words
31
 
32
  def check_answer(*args):
33
- correct_answer = [tag for word, tag in tagged_words]
34
  user_answer = list(args)
35
  if user_answer == correct_answer:
36
  return 'Correcto!'
37
  else:
38
  return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer)
39
 
40
- iface = gr.Interface(fn=generate_sentence, inputs='button', outputs=['textbox', 'dynamic'])
41
- iface.add_interface(fn=check_answer, inputs=gr.inputs.Dynamic(type="dropdown", choices=pos_tags, label='Word Tags'), outputs='textbox')
 
 
 
 
 
 
 
 
 
42
  iface.launch()
 
1
+ ## app.py ##
2
  import gradio as gr
3
  import spacy
4
+ from transformers import pipeline
5
 
6
  nlp = spacy.load('es_core_news_sm')
7
+ text_generator = pipeline('text-generation', model='gpt2')
 
 
 
 
 
8
 
9
  pos_tags = ['ADJ', 'ADP', 'ADV', 'AUX', 'CONJ', 'DET', 'INTJ', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X']
10
 
11
+ sentence_state = {'sentence': '', 'tagged_words': []}
 
12
 
13
  def generate_sentence():
14
+ result = text_generator('')[0]
15
+ sentence = result['generated_text']
 
 
 
16
  tagged_words = analyze_sentence(sentence)
17
+ sentence_state['sentence'] = sentence
18
+ sentence_state['tagged_words'] = tagged_words
19
  return sentence, [word for word, _ in tagged_words]
20
 
21
  def analyze_sentence(sentence):
22
  doc = nlp(sentence)
23
+ return [(token.text, token.pos_) for token in doc]
 
24
 
25
  def check_answer(*args):
26
+ correct_answer = [tag for word, tag in sentence_state['tagged_words']]
27
  user_answer = list(args)
28
  if user_answer == correct_answer:
29
  return 'Correcto!'
30
  else:
31
  return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer)
32
 
33
+ def game_flow():
34
+ sentence, words = generate_sentence()
35
+ answer = check_answer(*gr.inputs)
36
+ return sentence, words, answer
37
+
38
+ iface = gr.Interface(fn=game_flow,
39
+ inputs=[gr.inputs.Button(label='Generate Sentence')] +
40
+ [gr.inputs.Dropdown(choices=pos_tags, label=f'Word {i+1}') for i in range(len(sentence_state['tagged_words']))],
41
+ outputs=[gr.outputs.Textbox(label='Sentence'),
42
+ gr.outputs.Textbox(label='Words'),
43
+ gr.outputs.Textbox(label='Result')])
44
  iface.launch()