import gradio as gr import spacy from transformers import pipeline nlp = spacy.load('es_core_news_sm') text_generator = pipeline('text-generation', model='gpt2') def generate_sentence(): result = text_generator('')[0] sentence = result['generated_text'] return sentence def analyze_sentence(sentence): doc = nlp(sentence) tagged_words = [(token.text, token.pos_) for token in doc] return tagged_words def check_answer(sentence, answer): tagged_words = analyze_sentence(sentence) correct_answer = [tag for word, tag in tagged_words] if answer == correct_answer: return 'Correcto!' else: return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer) sentence = generate_sentence() iface = gr.Interface(fn=check_answer, inputs=['text', 'list'], outputs='text') iface.launch()