## app.py ## from transformers import pipeline from gradio import Interface import gradio as gr # Create a dictionary of models MODELS = { "T5": "lmsys/fastchat-t5-3b-v1.0", "Bert": "bert-base-multilingual-cased", "GPT2": "datificate/gpt2-small-spanish", "bloom":"bigscience/bloom" } # Define your function def generate_and_analyze(model_name, input_text): # Load the model from the dictionary using the selected model name model = MODELS[model_name] text_generator = pipeline('text-generation', model=model, device=0) # Use GPU if available result = text_generator(input_text, max_length=250, do_sample=True)[0] return result['generated_text'] # Define your interface iface = gr.Interface( fn=generate_and_analyze, inputs=[ gr.inputs.Dropdown(choices=list(MODELS.keys()), label="Model"), gr.inputs.Textbox(lines=2, label="Input Text") ], outputs="text" ) iface.launch()