|
|
import gradio as gr |
|
|
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration |
|
|
import torch |
|
|
import librosa |
|
|
import subprocess |
|
|
from langdetect import detect_langs |
|
|
import os |
|
|
import warnings |
|
|
from transformers import logging |
|
|
import math |
|
|
import json |
|
|
from pyannote.audio import Pipeline |
|
|
|
|
|
|
|
|
warnings.filterwarnings("ignore") |
|
|
logging.set_verbosity_error() |
|
|
|
|
|
|
|
|
MODELS = { |
|
|
"es": [ |
|
|
"openai/whisper-large-v3", |
|
|
"facebook/wav2vec2-large-xlsr-53-spanish", |
|
|
"jonatasgrosman/wav2vec2-xls-r-1b-spanish" |
|
|
], |
|
|
"en": [ |
|
|
"openai/whisper-large-v3", |
|
|
"facebook/wav2vec2-large-960h", |
|
|
"microsoft/wav2vec2-base-960h" |
|
|
], |
|
|
"pt": [ |
|
|
"facebook/wav2vec2-large-xlsr-53-portuguese", |
|
|
"openai/whisper-medium", |
|
|
"jonatasgrosman/wav2vec2-large-xlsr-53-portuguese" |
|
|
] |
|
|
} |
|
|
|
|
|
def convert_audio_to_wav(audio_path): |
|
|
wav_path = "converted_audio.wav" |
|
|
command = ["ffmpeg", "-i", audio_path, "-ac", "1", "-ar", "16000", wav_path] |
|
|
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) |
|
|
return wav_path |
|
|
|
|
|
def detect_language(audio_path): |
|
|
speech, _ = librosa.load(audio_path, sr=16000, duration=30) |
|
|
|
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-base") |
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") |
|
|
|
|
|
input_features = processor(speech, sampling_rate=16000, return_tensors="pt").input_features |
|
|
predicted_ids = model.generate(input_features) |
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
langs = detect_langs(transcription) |
|
|
|
|
|
es_confidence = next((lang.prob for lang in langs if lang.lang == 'es'), 0) |
|
|
pt_confidence = next((lang.prob for lang in langs if lang.lang == 'pt'), 0) |
|
|
|
|
|
if abs(es_confidence - pt_confidence) < 0.2: |
|
|
return 'es' |
|
|
|
|
|
return max(langs, key=lambda x: x.prob).lang |
|
|
|
|
|
def diarize_audio(wav_audio): |
|
|
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization") |
|
|
diarization = pipeline(wav_audio) |
|
|
return diarization |
|
|
|
|
|
def transcribe_audio_stream(audio, model_name, diarization): |
|
|
wav_audio = convert_audio_to_wav(audio) |
|
|
speech, rate = librosa.load(wav_audio, sr=16000) |
|
|
duration = len(speech) / rate |
|
|
|
|
|
if "whisper" in model_name: |
|
|
processor = WhisperProcessor.from_pretrained(model_name) |
|
|
model = WhisperForConditionalGeneration.from_pretrained(model_name) |
|
|
|
|
|
chunk_duration = 30 |
|
|
|
|
|
transcriptions = [] |
|
|
for i in range(0, int(duration), chunk_duration): |
|
|
end = min(i + chunk_duration, duration) |
|
|
chunk = speech[int(i * rate):int(end * rate)] |
|
|
|
|
|
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features |
|
|
predicted_ids = model.generate(input_features) |
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
progress = min(100, (end / duration) * 100) |
|
|
timestamp = i |
|
|
transcriptions.append((timestamp, transcription)) |
|
|
yield transcriptions, progress |
|
|
else: |
|
|
transcriber = pipeline("automatic-speech-recognition", model=model_name) |
|
|
|
|
|
chunk_duration = 10 |
|
|
|
|
|
transcriptions = [] |
|
|
for i in range(0, int(duration), chunk_duration): |
|
|
end = min(i + chunk_duration, duration) |
|
|
chunk = speech[int(i * rate):int(end * rate)] |
|
|
result = transcriber(chunk) |
|
|
|
|
|
progress = min(100, (end / duration) * 100) |
|
|
timestamp = i |
|
|
transcriptions.append((timestamp, result["text"])) |
|
|
yield transcriptions, progress |
|
|
|
|
|
|
|
|
speaker_transcriptions = [] |
|
|
for segment in diarization.itertracks(yield_label=True): |
|
|
start, end, speaker = segment |
|
|
start_time = start / rate |
|
|
end_time = end / rate |
|
|
text_segment = "" |
|
|
for ts, text in transcriptions: |
|
|
if start_time <= ts <= end_time: |
|
|
text_segment += text + " " |
|
|
speaker_transcriptions.append((start_time, end_time, speaker, text_segment.strip())) |
|
|
|
|
|
return speaker_transcriptions |
|
|
|
|
|
def detect_and_select_model(audio): |
|
|
wav_audio = convert_audio_to_wav(audio) |
|
|
language = detect_language(wav_audio) |
|
|
model_options = MODELS.get(language, MODELS["en"]) |
|
|
return language, model_options |
|
|
|
|
|
def save_transcription(transcriptions, file_format): |
|
|
if file_format == "txt": |
|
|
with open("transcription.txt", "w") as f: |
|
|
for start, end, speaker, text in transcriptions: |
|
|
f.write(f"[{start}-{end}] {speaker}: {text}\n") |
|
|
return "transcription.txt" |
|
|
elif file_format == "json": |
|
|
with open("transcription.json", "w") as f: |
|
|
json.dump(transcriptions, f) |
|
|
return "transcription.json" |
|
|
|
|
|
def combined_interface(audio): |
|
|
try: |
|
|
language, model_options = detect_and_select_model(audio) |
|
|
selected_model = model_options[0] |
|
|
|
|
|
yield language, model_options, selected_model, [], 0, "Initializing..." |
|
|
|
|
|
wav_audio = convert_audio_to_wav(audio) |
|
|
diarization = diarize_audio(wav_audio) |
|
|
transcriptions = [] |
|
|
for partial_transcriptions, progress in transcribe_audio_stream(audio, selected_model, diarization): |
|
|
transcriptions = partial_transcriptions |
|
|
transcriptions_text = "\n".join([f"[{start}-{end}] {speaker}: {text}" for start, end, speaker, text in transcriptions]) |
|
|
progress_int = math.floor(progress) |
|
|
status = f"Transcribing... {progress_int}% complete" |
|
|
yield language, model_options, selected_model, transcriptions_text, progress_int, status |
|
|
|
|
|
|
|
|
os.remove("converted_audio.wav") |
|
|
|
|
|
yield language, model_options, selected_model, transcriptions_text, 100, "Transcription complete!" |
|
|
|
|
|
except Exception as e: |
|
|
yield str(e), [], "", "An error occurred during processing.", 0, "Error" |
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=combined_interface, |
|
|
inputs=gr.Audio(type="filepath"), |
|
|
outputs=[ |
|
|
gr.Textbox(label="Detected Language"), |
|
|
gr.Dropdown(label="Available Models", choices=[]), |
|
|
gr.Textbox(label="Selected Model"), |
|
|
gr.Textbox(label="Transcription", lines=10), |
|
|
gr.Slider(minimum=0, maximum=100, label="Progress", interactive=False), |
|
|
gr.Textbox(label="Status"), |
|
|
gr.File(label="Download Transcription (TXT)", type="filepath", interactive=True, value="transcription.txt"), |
|
|
gr.File(label="Download Transcription (JSON)", type="filepath", interactive=True, value="transcription.json") |
|
|
], |
|
|
title="Multilingual Audio Transcriber with Real-time Display, Timestamps, and Speaker Diarization", |
|
|
description="Upload an audio file to detect the language, select the transcription model, and get the transcription with timestamps and speaker labels in real-time. Download the transcription as TXT or JSON. Optimized for Spanish, English, and Portuguese.", |
|
|
live=True |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
iface.queue().launch() |
|
|
|