Spaces:
Build error
Build error
new file: configs/frame_templates.yaml
Browse filesnew file: image_processor/analyzer.py
new file: image_processor/framer.py
- configs/frame_templates.yaml +18 -0
- image_processor/analyzer.py +94 -0
- image_processor/framer.py +92 -0
configs/frame_templates.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
styles:
|
2 |
+
baroque:
|
3 |
+
prompt: "Ornate gold leaf frame with floral motifs, intricate carvings, classical Baroque style"
|
4 |
+
colors: ["#FFD700", "#FFFFFF", "#704214"]
|
5 |
+
mask_size: 760
|
6 |
+
elements: ["curves", "scrollwork", "acanthus leaves"]
|
7 |
+
|
8 |
+
minimalista:
|
9 |
+
prompt: "Slim matte black metal frame with clean lines, modern minimalist design"
|
10 |
+
colors: ["#000000", "#E0E0E0"]
|
11 |
+
mask_size: 900
|
12 |
+
elements: ["straight edges", "sharp corners", "flat profile"]
|
13 |
+
|
14 |
+
abstracto:
|
15 |
+
prompt: "Geometric asymmetric frame with bold color blocks, contemporary art style"
|
16 |
+
colors: ["#FF0000", "#00FF00", "#0000FF"]
|
17 |
+
mask_size: 800
|
18 |
+
elements: ["triangles", "circles", "irregular shapes"]
|
image_processor/analyzer.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import logging
|
6 |
+
|
7 |
+
class ImageAnalyzer:
|
8 |
+
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
|
9 |
+
self.device = device
|
10 |
+
self.logger = logging.getLogger(__name__)
|
11 |
+
self.models = self._load_models()
|
12 |
+
|
13 |
+
def _load_models(self):
|
14 |
+
try:
|
15 |
+
return {
|
16 |
+
'captioning': pipeline(
|
17 |
+
"image-to-text",
|
18 |
+
model="Salesforce/blip2-opt-2.7b",
|
19 |
+
device=self.device,
|
20 |
+
torch_dtype=torch.float16 if 'cuda' in self.device else torch.float32
|
21 |
+
),
|
22 |
+
'art_analysis': pipeline(
|
23 |
+
"text-generation",
|
24 |
+
model="ArtGAN/art-critique-generator",
|
25 |
+
device=self.device
|
26 |
+
),
|
27 |
+
'color_detector': pipeline(
|
28 |
+
"image-classification",
|
29 |
+
model="google/color-detector",
|
30 |
+
device=self.device
|
31 |
+
),
|
32 |
+
'style_classifier': pipeline(
|
33 |
+
"image-classification",
|
34 |
+
model="dima806/art_painting_style_detection",
|
35 |
+
device=self.device
|
36 |
+
)
|
37 |
+
}
|
38 |
+
except Exception as e:
|
39 |
+
self.logger.error(f"Error loading models: {str(e)}")
|
40 |
+
raise
|
41 |
+
|
42 |
+
def analyze_image(self, image):
|
43 |
+
try:
|
44 |
+
if isinstance(image, (str, bytes)):
|
45 |
+
image = Image.open(image)
|
46 |
+
|
47 |
+
results = {}
|
48 |
+
|
49 |
+
# Captioning
|
50 |
+
caption = self.models['captioning'](
|
51 |
+
image,
|
52 |
+
max_new_tokens=100,
|
53 |
+
generate_kwargs={"do_sample": False}
|
54 |
+
)
|
55 |
+
results.update(self._parse_caption(caption))
|
56 |
+
|
57 |
+
# Color detection
|
58 |
+
results['colors'] = self._get_colors(image)
|
59 |
+
|
60 |
+
# Style classification
|
61 |
+
style = self.models['style_classifier'](image)[0]
|
62 |
+
results['style'] = style['label']
|
63 |
+
results['style_confidence'] = style['score']
|
64 |
+
|
65 |
+
# Art analysis
|
66 |
+
art_prompt = f"Analyze this {results['style']} artwork: {results['description']}"
|
67 |
+
results['art_commentary'] = self.models['art_analysis'](
|
68 |
+
art_prompt,
|
69 |
+
max_new_tokens=200
|
70 |
+
)[0]['generated_text']
|
71 |
+
|
72 |
+
return results
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
self.logger.error(f"Analysis failed: {str(e)}")
|
76 |
+
return None
|
77 |
+
|
78 |
+
def _parse_caption(self, caption_output):
|
79 |
+
full_text = caption_output[0]['generated_text']
|
80 |
+
parts = full_text.split('.', 1)
|
81 |
+
return {
|
82 |
+
'title': parts[0].strip(),
|
83 |
+
'description': parts[1].strip() if len(parts) > 1 else full_text
|
84 |
+
}
|
85 |
+
|
86 |
+
def _get_colors(self, image):
|
87 |
+
colors = self.models['color_detector'](
|
88 |
+
image.resize((256, 256)),
|
89 |
+
top_k=5
|
90 |
+
)
|
91 |
+
return [{
|
92 |
+
'hex': c['label'],
|
93 |
+
'score': round(float(c['score']), 3)
|
94 |
+
} for c in colors]
|
image_processor/framer.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import time
|
3 |
+
import logging
|
4 |
+
from tenacity import retry, wait_exponential, stop_after_attempt
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
class FrameGenerator:
|
11 |
+
def __init__(self, api_key, config_path='configs/frame_templates.yaml'):
|
12 |
+
openai.api_key = api_key
|
13 |
+
self.logger = logging.getLogger(__name__)
|
14 |
+
self.templates = self._load_templates(config_path)
|
15 |
+
self.rate_limit = 5 # Llamadas por minuto
|
16 |
+
self.last_call = 0
|
17 |
+
|
18 |
+
def _load_templates(self, config_path):
|
19 |
+
try:
|
20 |
+
with open(config_path) as f:
|
21 |
+
return yaml.safe_load(f)['styles']
|
22 |
+
except Exception as e:
|
23 |
+
self.logger.error(f"Error loading templates: {str(e)}")
|
24 |
+
return {}
|
25 |
+
|
26 |
+
@retry(
|
27 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
28 |
+
stop=stop_after_attempt(3),
|
29 |
+
reraise=True
|
30 |
+
)
|
31 |
+
def generate_frame(self, image_url, metadata):
|
32 |
+
self._throttle_requests()
|
33 |
+
style = metadata.get('style', 'minimalista')
|
34 |
+
|
35 |
+
template = self.templates.get(style, self.templates['minimalista'])
|
36 |
+
prompt = self._build_prompt(template, metadata)
|
37 |
+
|
38 |
+
try:
|
39 |
+
response = openai.images.generate(
|
40 |
+
model="dall-e-3",
|
41 |
+
prompt=prompt,
|
42 |
+
size="1024x1024",
|
43 |
+
quality="hd",
|
44 |
+
n=1,
|
45 |
+
response_format="url"
|
46 |
+
)
|
47 |
+
|
48 |
+
return self._composite_frame(
|
49 |
+
image_url,
|
50 |
+
response.data[0].url,
|
51 |
+
template['mask_size']
|
52 |
+
)
|
53 |
+
|
54 |
+
except openai.RateLimitError:
|
55 |
+
self.logger.warning("Rate limit exceeded, retrying...")
|
56 |
+
time.sleep(60)
|
57 |
+
raise
|
58 |
+
except Exception as e:
|
59 |
+
self.logger.error(f"Generation failed: {str(e)}")
|
60 |
+
return None
|
61 |
+
|
62 |
+
def _build_prompt(self, template, metadata):
|
63 |
+
color_str = ", ".join(metadata['colors'][:3])
|
64 |
+
return (
|
65 |
+
f"High-quality frame for {metadata['style']} painting, "
|
66 |
+
f"main colors: {color_str}. {template['prompt']} "
|
67 |
+
"No text, no signatures, pure decorative frame."
|
68 |
+
)
|
69 |
+
|
70 |
+
def _throttle_requests(self):
|
71 |
+
elapsed = time.time() - self.last_call
|
72 |
+
if elapsed < 60 / self.rate_limit:
|
73 |
+
time.sleep(60 / self.rate_limit - elapsed)
|
74 |
+
self.last_call = time.time()
|
75 |
+
|
76 |
+
def _composite_frame(self, original_url, frame_url, mask_size=800):
|
77 |
+
try:
|
78 |
+
original = Image.open(requests.get(original_url, stream=True).raw)
|
79 |
+
frame = Image.open(requests.get(frame_url, stream=True).raw)
|
80 |
+
|
81 |
+
original = original.resize((mask_size, mask_size))
|
82 |
+
position = ((frame.width - original.width) // 2,
|
83 |
+
(frame.height - original.height) // 2)
|
84 |
+
|
85 |
+
composite = frame.copy()
|
86 |
+
composite.paste(original, position)
|
87 |
+
|
88 |
+
return composite
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
self.logger.error(f"Compositing failed: {str(e)}")
|
92 |
+
return None
|