Spaces:
Sleeping
Sleeping
import pandas as pd | |
import gradio as gr | |
from sklearn.model_selection import train_test_split | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
# Load and clean the dataset | |
data = pd.read_csv("spam.csv") | |
data.drop_duplicates(inplace=True) | |
data['Category'] = data['Category'].replace(['ham', 'spam'], ['Not spam', 'Spam']) | |
# Prepare data | |
X = data['Message'] | |
y = data['Category'] | |
# Split into training and testing sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) | |
# Convert text data to numerical features | |
vectorizer = CountVectorizer(stop_words='english') | |
X_train_features = vectorizer.fit_transform(X_train) | |
X_test_features = vectorizer.transform(X_test) | |
# Train the model | |
model = MultinomialNB() | |
model.fit(X_train_features, y_train) | |
# Define prediction function | |
def predict_spam(message): | |
message_features = vectorizer.transform([message]) | |
prediction = model.predict(message_features)[0] | |
return prediction | |
# Build better UI | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
gr.Markdown("## π© Spam Detector\nEnter any message below to check if it's spam or not.") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
message_input = gr.Textbox( | |
label="Your Message", | |
placeholder="e.g. Congratulations! You've won a prize...", | |
lines=4 | |
) | |
submit_btn = gr.Button("Detect Spam") | |
with gr.Column(scale=2): | |
result_output = gr.Label(label="Prediction") | |
examples = [ | |
["Congratulations! You have been selected for a free cruise!"], | |
["Hey, what time is class tomorrow?"], | |
["Win cash now!!! Click here"], | |
["Lunch at 1 PM?"], | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=message_input | |
) | |
submit_btn.click(fn=predict_spam, inputs=message_input, outputs=result_output) | |
# Launch app | |
if __name__ == "__main__": | |
demo.launch() | |