Meryb commited on
Commit
b8fa9e1
·
verified ·
1 Parent(s): d9b2c86

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +41 -41
  2. requirements.txt +3 -0
  3. spam.csv +0 -0
app.py CHANGED
@@ -1,41 +1,41 @@
1
- import pandas as pd
2
- import gradio as gr
3
- from sklearn.model_selection import train_test_split
4
- from sklearn.feature_extraction.text import CountVectorizer
5
- from sklearn.naive_bayes import MultinomialNB
6
-
7
- # Load and clean the dataset
8
- data = pd.read_csv(r"spam.csv")
9
- data.drop_duplicates(inplace=True)
10
- data['Category'] = data['Category'].replace(['ham', 'spam'], ['Not spam', 'spam'])
11
-
12
- # Prepare data
13
- X = data['Message']
14
- y = data['Category']
15
-
16
- # Split into training and testing sets
17
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
18
-
19
- # Convert text data to numerical features
20
- vectorizer = CountVectorizer(stop_words='english')
21
- X_train_features = vectorizer.fit_transform(X_train)
22
- X_test_features = vectorizer.transform(X_test)
23
-
24
- # Train the model
25
- model = MultinomialNB()
26
- model.fit(X_train_features, y_train)
27
-
28
- # Define prediction function
29
- def predict_spam(message):
30
- message_features = vectorizer.transform([message])
31
- prediction = model.predict(message_features)[0]
32
- return f"Prediction: {prediction}"
33
-
34
- # Launch Gradio interface
35
- gr.Interface(
36
- fn=predict_spam,
37
- inputs="text",
38
- outputs="text",
39
- title="📩 Spam Detection with Gradio",
40
- description="Enter a message and the model will predict whether it's spam or not."
41
- ).launch()
 
1
+ import pandas as pd
2
+ import gradio as gr
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.feature_extraction.text import CountVectorizer
5
+ from sklearn.naive_bayes import MultinomialNB
6
+
7
+ # Load and clean the dataset
8
+ data = pd.read_csv(r"C:\Users\merys\Downloads\spam.csv")
9
+ data.drop_duplicates(inplace=True)
10
+ data['Category'] = data['Category'].replace(['ham', 'spam'], ['Not spam', 'spam'])
11
+
12
+ # Prepare data
13
+ X = data['Message']
14
+ y = data['Category']
15
+
16
+ # Split into training and testing sets
17
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
18
+
19
+ # Convert text data to numerical features
20
+ vectorizer = CountVectorizer(stop_words='english')
21
+ X_train_features = vectorizer.fit_transform(X_train)
22
+ X_test_features = vectorizer.transform(X_test)
23
+
24
+ # Train the model
25
+ model = MultinomialNB()
26
+ model.fit(X_train_features, y_train)
27
+
28
+ # Define prediction function
29
+ def predict_spam(message):
30
+ message_features = vectorizer.transform([message])
31
+ prediction = model.predict(message_features)[0]
32
+ return f"Prediction: {prediction}"
33
+
34
+ # Launch Gradio interface
35
+ gr.Interface(
36
+ fn=predict_spam,
37
+ inputs="text",
38
+ outputs="text",
39
+ title="📩 Spam Detection with Gradio",
40
+ description="Enter a message and the model will predict whether it's spam or not."
41
+ ).launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pandas
2
+ scikit-learn
3
+ gradio
spam.csv ADDED
The diff for this file is too large to render. See raw diff