Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# def greet(name): | |
# return "Hello " + name + "!!" | |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# demo.launch() | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
# Load model and tokenizer from Hugging Face Hub | |
tokenizer = AutoTokenizer.from_pretrained("Mhammad2023/bert-finetuned-ner") | |
model = AutoModelForTokenClassification.from_pretrained( | |
"Mhammad2023/bert-finetuned-ner", | |
from_tf=True, | |
torch_dtype=torch.float32, | |
device_map="cpu" | |
) | |
classifier = pipeline("token-classification", model=model, tokenizer=tokenizer, device="cpu") | |
def predict(text): | |
results = classifier(text) | |
if not results: | |
return "No entities found" | |
output = [] | |
for entity in results: | |
output.append(f"{entity['word']}: {entity['entity']} ({round(entity['score']*100, 2)}%)") | |
return "\n".join(output) | |
gr.Interface(fn=predict, inputs="text", outputs="text", title="Named Entity Recognition").launch() | |