# import gradio as gr # def greet(name): # return "Hello " + name + "!!" # demo = gr.Interface(fn=greet, inputs="text", outputs="text") # demo.launch() import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline # Load model and tokenizer from Hugging Face Hub tokenizer = AutoTokenizer.from_pretrained("Mhammad2023/bert-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained( "Mhammad2023/bert-finetuned-ner", torch_dtype=torch.float32 ) classifier = pipeline("token-classification", model=model, tokenizer=tokenizer, device="cpu") def predict(text): results = classifier(text) if not results: return "No entities found" output = [] for entity in results: output.append(f"{entity['word']}: {entity['entity']} ({round(entity['score']*100, 2)}%)") return "\n".join(output) gr.Interface(fn=predict, inputs="text", outputs="text", title="Named Entity Recognition").launch()