File size: 5,580 Bytes
8b91654
415b70d
8b91654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa69787
 
 
 
8b91654
 
 
 
 
 
 
 
 
c9f4c20
31fe8a6
 
 
c9f4c20
2fb5dff
8fc3433
2fb5dff
 
8fc3433
2fb5dff
 
8d60246
d2ff2e0
edef27b
b5cdc12
 
be7d50e
b5cdc12
 
 
 
b79b10a
 
 
 
b5cdc12
 
 
 
 
 
b79b10a
c9f4c20
b79b10a
2b84175
63fe265
2fb5dff
 
0bb86ad
2fb5dff
 
 
8fc3433
 
415b70d
84135ec
415b70d
c9f4c20
0bb86ad
2fb5dff
 
c9f4c20
79fe2d9
 
 
 
 
be7d50e
79fe2d9
 
 
 
 
 
 
 
 
 
2fb5dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f4c20
 
79fe2d9
 
 
 
be7d50e
79fe2d9
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
#from streamlit_pills import pills
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import fitz
import os

model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")

def extract_text_from_pdf(file_path):
    text = ''
    with fitz.open(file_path) as pdf_document:
        for page_number in range(pdf_document.page_count):
            page = pdf_document.load_page(page_number)
            text += page.get_text()
    return text

def predict_class(text):
    try:
        max_length = 4096
        truncated_text = text[:max_length]

        inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
            predicted_class = torch.argmax(logits, dim=1).item()
        return predicted_class
    except Exception as e:
        st.error(f"Error during prediction: {e}")
        return None


uploaded_files_dir = "uploaded_files"
os.makedirs(uploaded_files_dir, exist_ok=True)


class_colors = {
    0: "#d62728",  # Level 1
    1: "#ff7f0e",  # Level 2
    2: "#2ca02c",  # Level 3
    3: "#1f77b4"   # Level 4
}

st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")


with st.sidebar:
    st.image("logo.png", width=70)
    st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
    
    st.markdown("# Paper Citation Classifier")
    st.markdown("---")
    st.markdown("## About")
    st.markdown('''
    This is a tool to classify paper citations into different levels based on their number of citations.
    Powered by Fine-Tuned [Longformer model](https://huggingface.co/REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) with custom data.
    ''')
    st.markdown("### Class Levels:")
    st.markdown("- Level 1: Highly cited papers")
    st.markdown("- Level 2: Average cited papers")
    st.markdown("- Level 3: More cited papers")
    st.markdown("- Level 4: Low cited papers")
    st.markdown("---")
    st.markdown('Tabuk University')

st.title("Check Your Paper Now!")

option = st.radio("Select input type:", ("Text", "PDF"))

if option == "Text":
    title_input = st.text_area("Enter Title:")
    abstract_input = st.text_area("Enter Abstract:")
    full_text_input = st.text_area("Enter Full Text:")
    affiliations_input = st.text_area("Enter Affiliations:")
    options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
    
    #categories = pills("Select WoS category", options)
    
    categories = st.multiselect("Select WoS categories:", options)

    combined_text = f"{title_input} [SEP] {abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(categories)}"

    if st.button("Predict"):
        if not any([title_input, abstract_input, full_text_input, affiliations_input]):
            st.warning("Please enter paper text.")
        else:
            with st.spinner("Predicting..."):
                predicted_class = predict_class(combined_text)
                if predicted_class is not None:
                    class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]

                    st.text("Predicted Class:")
                    for i, label in enumerate(class_labels):
                        if i == predicted_class:
                            st.markdown(
                                f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                unsafe_allow_html=True
                            )
                        else:
                            st.text(label)

elif option == "PDF":
    uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])

    if uploaded_file is not None:
        with st.spinner("Processing PDF..."):
            file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
            with open(file_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            st.success("File uploaded successfully.")
            st.text(f"File Path: {file_path}")
            
            file_text = extract_text_from_pdf(file_path)
            st.text("Extracted Text:")
            st.text(file_text)

            if st.button("Predict from PDF Text"):
                if not file_text.strip():
                    st.warning("Please upload a PDF with text content.")
                else:
                    with st.spinner("Predicting..."):
                        predicted_class = predict_class(file_text)
                        if predicted_class is not None:
                            class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
                            st.text("Predicted Class:")
                            for i, label in enumerate(class_labels):
                                if i == predicted_class:
                                    st.markdown(
                                        f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                        unsafe_allow_html=True
                                    )
                                else:
                                    st.text(label)