Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
4 |
import fitz
|
5 |
import os
|
6 |
|
7 |
-
# Load the model and tokenizer
|
8 |
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
|
9 |
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
10 |
|
@@ -18,7 +17,6 @@ def extract_text_from_pdf(file_path):
|
|
18 |
|
19 |
def predict_class(text):
|
20 |
try:
|
21 |
-
# Truncate text to maximum length of 4096 tokens
|
22 |
max_length = 4096
|
23 |
truncated_text = text[:max_length]
|
24 |
|
@@ -32,11 +30,9 @@ def predict_class(text):
|
|
32 |
st.error(f"Error during prediction: {e}")
|
33 |
return None
|
34 |
|
35 |
-
# Create a directory to store uploaded files
|
36 |
uploaded_files_dir = "uploaded_files"
|
37 |
os.makedirs(uploaded_files_dir, exist_ok=True)
|
38 |
|
39 |
-
# Define colors for different classes
|
40 |
class_colors = {
|
41 |
0: "#1f77b4", # Level 1
|
42 |
1: "#ff7f0e", # Level 2
|
@@ -44,7 +40,6 @@ class_colors = {
|
|
44 |
3: "#d62728" # Level 4
|
45 |
}
|
46 |
|
47 |
-
# Define information for each level
|
48 |
class_info = {
|
49 |
0: "Highly cited",
|
50 |
1: "Average citations",
|
@@ -57,12 +52,10 @@ st.title("Paper Citation Classifier")
|
|
57 |
option = st.radio("Select input type:", ("Text", "PDF"))
|
58 |
|
59 |
if option == "Text":
|
60 |
-
# Input text boxes for abstract, full text, and affiliations
|
61 |
abstract_input = st.text_area("Enter Abstract:")
|
62 |
full_text_input = st.text_area("Enter Full Text:")
|
63 |
affiliations_input = st.text_area("Enter Affiliations:")
|
64 |
|
65 |
-
# Concatenate inputs with [SEP]
|
66 |
combined_text = f"{abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input}"
|
67 |
|
68 |
if st.button("Predict"):
|
@@ -96,12 +89,110 @@ elif option == "PDF":
|
|
96 |
st.text("Extracted Text:")
|
97 |
st.text(file_text)
|
98 |
|
99 |
-
# Provide an option to predict from PDF text
|
100 |
if st.button("Predict from PDF Text"):
|
101 |
with st.spinner("Predicting..."):
|
102 |
predicted_class = predict_class(file_text)
|
103 |
if predicted_class is not None:
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
st.text("Predicted Class:")
|
106 |
for i, label in enumerate(class_labels):
|
107 |
if i == predicted_class:
|
|
|
4 |
import fitz
|
5 |
import os
|
6 |
|
|
|
7 |
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
|
8 |
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
9 |
|
|
|
17 |
|
18 |
def predict_class(text):
|
19 |
try:
|
|
|
20 |
max_length = 4096
|
21 |
truncated_text = text[:max_length]
|
22 |
|
|
|
30 |
st.error(f"Error during prediction: {e}")
|
31 |
return None
|
32 |
|
|
|
33 |
uploaded_files_dir = "uploaded_files"
|
34 |
os.makedirs(uploaded_files_dir, exist_ok=True)
|
35 |
|
|
|
36 |
class_colors = {
|
37 |
0: "#1f77b4", # Level 1
|
38 |
1: "#ff7f0e", # Level 2
|
|
|
40 |
3: "#d62728" # Level 4
|
41 |
}
|
42 |
|
|
|
43 |
class_info = {
|
44 |
0: "Highly cited",
|
45 |
1: "Average citations",
|
|
|
52 |
option = st.radio("Select input type:", ("Text", "PDF"))
|
53 |
|
54 |
if option == "Text":
|
|
|
55 |
abstract_input = st.text_area("Enter Abstract:")
|
56 |
full_text_input = st.text_area("Enter Full Text:")
|
57 |
affiliations_input = st.text_area("Enter Affiliations:")
|
58 |
|
|
|
59 |
combined_text = f"{abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input}"
|
60 |
|
61 |
if st.button("Predict"):
|
|
|
89 |
st.text("Extracted Text:")
|
90 |
st.text(file_text)
|
91 |
|
|
|
92 |
if st.button("Predict from PDF Text"):
|
93 |
with st.spinner("Predicting..."):
|
94 |
predicted_class = predict_class(file_text)
|
95 |
if predicted_class is not None:
|
96 |
+
import streamlit as st
|
97 |
+
import torch
|
98 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
99 |
+
import fitz
|
100 |
+
import os
|
101 |
+
|
102 |
+
|
103 |
+
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
105 |
+
|
106 |
+
def extract_text_from_pdf(file_path):
|
107 |
+
text = ''
|
108 |
+
with fitz.open(file_path) as pdf_document:
|
109 |
+
for page_number in range(pdf_document.page_count):
|
110 |
+
page = pdf_document.load_page(page_number)
|
111 |
+
text += page.get_text()
|
112 |
+
return text
|
113 |
+
|
114 |
+
def predict_class(text):
|
115 |
+
try:
|
116 |
+
max_length = 4096
|
117 |
+
truncated_text = text[:max_length]
|
118 |
+
|
119 |
+
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
120 |
+
with torch.no_grad():
|
121 |
+
outputs = model(**inputs)
|
122 |
+
logits = outputs.logits
|
123 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
124 |
+
return predicted_class
|
125 |
+
except Exception as e:
|
126 |
+
st.error(f"Error during prediction: {e}")
|
127 |
+
return None
|
128 |
+
|
129 |
+
uploaded_files_dir = "uploaded_files"
|
130 |
+
os.makedirs(uploaded_files_dir, exist_ok=True)
|
131 |
+
|
132 |
+
class_colors = {
|
133 |
+
0: "#1f77b4", # Level 1
|
134 |
+
1: "#ff7f0e", # Level 2
|
135 |
+
2: "#2ca02c", # Level 3
|
136 |
+
3: "#d62728" # Level 4
|
137 |
+
}
|
138 |
+
|
139 |
+
st.title("Paper Citation Classifier")
|
140 |
+
|
141 |
+
option = st.radio("Select input type:", ("Text", "PDF"))
|
142 |
+
|
143 |
+
if option == "Text":
|
144 |
+
abstract_input = st.text_area("Enter Abstract:")
|
145 |
+
full_text_input = st.text_area("Enter Full Text:")
|
146 |
+
affiliations_input = st.text_area("Enter Affiliations:")
|
147 |
+
|
148 |
+
categories = st.multiselect("Select categories:", ["Category 1", "Category 2", "Category 3", "Category 4"])
|
149 |
+
|
150 |
+
combined_text = f"{abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(categories)}"
|
151 |
+
|
152 |
+
if st.button("Predict"):
|
153 |
+
with st.spinner("Predicting..."):
|
154 |
+
predicted_class = predict_class(combined_text)
|
155 |
+
if predicted_class is not None:
|
156 |
+
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
157 |
+
st.text("Predicted Class:")
|
158 |
+
for i, label in enumerate(class_labels):
|
159 |
+
if i == predicted_class:
|
160 |
+
st.markdown(
|
161 |
+
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
|
162 |
+
unsafe_allow_html=True
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
st.text(label)
|
166 |
+
|
167 |
+
elif option == "PDF":
|
168 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
169 |
+
|
170 |
+
if uploaded_file is not None:
|
171 |
+
with st.spinner("Processing PDF..."):
|
172 |
+
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
173 |
+
with open(file_path, "wb") as f:
|
174 |
+
f.write(uploaded_file.getbuffer())
|
175 |
+
st.success("File uploaded successfully.")
|
176 |
+
st.text(f"File Path: {file_path}")
|
177 |
+
|
178 |
+
file_text = extract_text_from_pdf(file_path)
|
179 |
+
st.text("Extracted Text:")
|
180 |
+
st.text(file_text)
|
181 |
+
|
182 |
+
if st.button("Predict from PDF Text"):
|
183 |
+
with st.spinner("Predicting..."):
|
184 |
+
predicted_class = predict_class(file_text)
|
185 |
+
if predicted_class is not None:
|
186 |
+
class_labels = ["Level 1 (Highly Cited Paper)", "Level 2 (Average Cited Paper)", "Level 3 (More Cited Paper)", "Level 4 (Low Cited Paper)"]
|
187 |
+
st.text("Predicted Class:")
|
188 |
+
for i, label in enumerate(class_labels):
|
189 |
+
if i == predicted_class:
|
190 |
+
st.markdown(
|
191 |
+
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
|
192 |
+
unsafe_allow_html=True
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
st.text(label)
|
196 |
st.text("Predicted Class:")
|
197 |
for i, label in enumerate(class_labels):
|
198 |
if i == predicted_class:
|