Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import fitz
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
10 |
+
|
11 |
+
def extract_text_from_pdf(file_path):
|
12 |
+
text = ''
|
13 |
+
with fitz.open(file_path) as pdf_document:
|
14 |
+
for page_number in range(pdf_document.page_count):
|
15 |
+
page = pdf_document.load_page(page_number)
|
16 |
+
text += page.get_text()
|
17 |
+
return text
|
18 |
+
|
19 |
+
def predict_class(text):
|
20 |
+
try:
|
21 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
logits = outputs.logits
|
25 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
26 |
+
return predicted_class
|
27 |
+
except Exception as e:
|
28 |
+
st.error(f"Error during prediction: {e}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
st.title("Paper Citation Classifier")
|
32 |
+
|
33 |
+
# Input text boxes for abstract, full text, and affiliations
|
34 |
+
abstract_input = st.text_area("Enter Abstract:")
|
35 |
+
full_text_input = st.text_area("Enter Full Text:")
|
36 |
+
affiliations_input = st.text_area("Enter Affiliations:")
|
37 |
+
|
38 |
+
# PDF upload option
|
39 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
40 |
+
if uploaded_file is not None:
|
41 |
+
file_text = extract_text_from_pdf(uploaded_file)
|
42 |
+
st.text("Extracted Text from PDF:")
|
43 |
+
st.text(file_text)
|
44 |
+
|
45 |
+
# Concatenate inputs with [SEP]
|
46 |
+
combined_text = f"{abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input} [SEP] {file_text}"
|
47 |
+
|
48 |
+
if st.button("Predict"):
|
49 |
+
predicted_class = predict_class(combined_text)
|
50 |
+
if predicted_class is not None:
|
51 |
+
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
52 |
+
st.text(f"Predicted Class: {class_labels[predicted_class]}")
|