Mhassanen commited on
Commit
8b91654
·
verified ·
1 Parent(s): 0121647

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import fitz
5
+ import os
6
+
7
+ # Load the model and tokenizer
8
+ model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
9
+ tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
10
+
11
+ def extract_text_from_pdf(file_path):
12
+ text = ''
13
+ with fitz.open(file_path) as pdf_document:
14
+ for page_number in range(pdf_document.page_count):
15
+ page = pdf_document.load_page(page_number)
16
+ text += page.get_text()
17
+ return text
18
+
19
+ def predict_class(text):
20
+ try:
21
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
22
+ with torch.no_grad():
23
+ outputs = model(**inputs)
24
+ logits = outputs.logits
25
+ predicted_class = torch.argmax(logits, dim=1).item()
26
+ return predicted_class
27
+ except Exception as e:
28
+ st.error(f"Error during prediction: {e}")
29
+ return None
30
+
31
+ st.title("Paper Citation Classifier")
32
+
33
+ # Input text boxes for abstract, full text, and affiliations
34
+ abstract_input = st.text_area("Enter Abstract:")
35
+ full_text_input = st.text_area("Enter Full Text:")
36
+ affiliations_input = st.text_area("Enter Affiliations:")
37
+
38
+ # PDF upload option
39
+ uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
40
+ if uploaded_file is not None:
41
+ file_text = extract_text_from_pdf(uploaded_file)
42
+ st.text("Extracted Text from PDF:")
43
+ st.text(file_text)
44
+
45
+ # Concatenate inputs with [SEP]
46
+ combined_text = f"{abstract_input} [SEP] {full_text_input} [SEP] {affiliations_input} [SEP] {file_text}"
47
+
48
+ if st.button("Predict"):
49
+ predicted_class = predict_class(combined_text)
50
+ if predicted_class is not None:
51
+ class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
52
+ st.text(f"Predicted Class: {class_labels[predicted_class]}")