Spaces:
Sleeping
Sleeping
File size: 5,456 Bytes
6f34772 daeeec9 6f34772 daeeec9 6f34772 daeeec9 6f34772 daeeec9 0138d61 daeeec9 6f34772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# %%
import gradio as gr
from sklearn.ensemble import RandomForestRegressor
import numpy as np
import pandas as pd
import pickle
# Define model filename
model_filename = "random_forest_regression_extended.pkl"
try:
# Try to load the model
with open(model_filename, 'rb') as f:
model_data = pickle.load(f)
if isinstance(model_data, dict) and 'model' in model_data and 'feature_names' in model_data:
random_forest_model = model_data['model']
feature_names = model_data['feature_names']
# Check scikit-learn version and handle feature information
if hasattr(random_forest_model, 'n_features_in_'):
print('Number of features: ', random_forest_model.n_features_in_)
else:
print('Number of features: ', len(feature_names))
print('Features are: ', feature_names)
else:
print("Error: Model file does not contain expected dictionary structure")
print("Expected keys: 'model' and 'feature_names'")
print(f"Found keys: {model_data.keys() if isinstance(model_data, dict) else 'not a dictionary'}")
exit(1)
except FileNotFoundError:
print(f"Error: Could not find model file '{model_filename}'")
print("Please run save_model.py first to create the model file.")
exit(1)
except Exception as e:
print(f"Error loading model: {str(e)}")
print(f"scikit-learn version: {sklearn.__version__}")
exit(1)
# Load and prepare BFS data
df_bfs_data = pd.read_csv('bfs_municipality_and_tax_data.csv', sep=',', encoding='utf-8')
df_bfs_data['tax_income'] = df_bfs_data['tax_income'].str.replace("'", "").astype(float)
df_bfs_data['proximity_to_public_transportation'] = 500 # Default value in meters
# %%
locations = {
"Zürich": 261,
"Kloten": 62,
"Uster": 198,
"Illnau-Effretikon": 296,
"Feuerthalen": 27,
"Pfäffikon": 177,
"Ottenbach": 11,
"Dübendorf": 191,
"Richterswil": 138,
"Maur": 195,
"Embrach": 56,
"Bülach": 53,
"Winterthur": 230,
"Oetwil am See": 157,
"Russikon": 178,
"Obfelden": 10,
"Wald (ZH)": 120,
"Niederweningen": 91,
"Dällikon": 84,
"Buchs (ZH)": 83,
"Rüti (ZH)": 118,
"Hittnau": 173,
"Bassersdorf": 52,
"Glattfelden": 58,
"Opfikon": 66,
"Hinwil": 117,
"Regensberg": 95,
"Langnau am Albis": 136,
"Dietikon": 243,
"Erlenbach (ZH)": 151,
"Kappel am Albis": 6,
"Stäfa": 158,
"Zell (ZH)": 231,
"Turbenthal": 228,
"Oberglatt": 92,
"Winkel": 72,
"Volketswil": 199,
"Kilchberg (ZH)": 135,
"Wetzikon (ZH)": 121,
"Zumikon": 160,
"Weisslingen": 180,
"Elsau": 219,
"Hettlingen": 221,
"Rüschlikon": 139,
"Stallikon": 13,
"Dielsdorf": 86,
"Wallisellen": 69,
"Dietlikon": 54,
"Meilen": 156,
"Wangen-Brüttisellen": 200,
"Flaach": 28,
"Regensdorf": 96,
"Niederhasli": 90,
"Bauma": 297,
"Aesch (ZH)": 241,
"Schlieren": 247,
"Dürnten": 113,
"Unterengstringen": 249,
"Gossau (ZH)": 115,
"Oberengstringen": 245,
"Schleinikon": 98,
"Aeugst am Albis": 1,
"Rheinau": 38,
"Höri": 60,
"Rickenbach (ZH)": 225,
"Rafz": 67,
"Adliswil": 131,
"Zollikon": 161,
"Urdorf": 250,
"Hombrechtikon": 153,
"Birmensdorf (ZH)": 242,
"Fehraltorf": 172,
"Weiach": 102,
"Männedorf": 155,
"Küsnacht (ZH)": 154,
"Hausen am Albis": 4,
"Hochfelden": 59,
"Fällanden": 193,
"Greifensee": 194,
"Mönchaltorf": 196,
"Dägerlen": 214,
"Thalheim an der Thur": 39,
"Uetikon am See": 159,
"Seuzach": 227,
"Uitikon": 248,
"Affoltern am Albis": 2,
"Geroldswil": 244,
"Niederglatt": 89,
"Thalwil": 141,
"Rorbas": 68,
"Pfungen": 224,
"Weiningen (ZH)": 251,
"Bubikon": 112,
"Neftenbach": 223,
"Mettmenstetten": 9,
"Otelfingen": 94,
"Flurlingen": 29,
"Stadel": 100,
"Grüningen": 116,
"Henggart": 31,
"Dachsen": 25,
"Bonstetten": 3,
"Bachenbülach": 51,
"Horgen": 295
}
def predict_apartment(rooms, area, proximity, town):
bfs_number = locations[town]
df = df_bfs_data[df_bfs_data['bfs_number']==bfs_number].copy()
df.reset_index(inplace=True)
df.loc[0, 'rooms'] = rooms
df.loc[0, 'area'] = area
df.loc[0, 'proximity_to_public_transportation'] = proximity # Use user input instead of default
if len(df) != 1:
return -1
features = ['rooms', 'area', 'pop', 'pop_dens', 'frg_pct', 'emp', 'tax_income', 'proximity_to_public_transportation']
X = df[features].values
prediction = random_forest_model.predict(X)
return np.round(prediction[0], 0)
# Create the Gradio interface
iface = gr.Interface(
fn=predict_apartment,
inputs=[
gr.Number(label="Number of Rooms"),
gr.Number(label="Area"),
gr.Slider(minimum=0, maximum=2000, value=500, step=50,
label="Distance to Public Transportation (meters)"),
gr.Dropdown(choices=locations.keys(), label="Town", type="value")
],
outputs=[gr.Number(label="Predicted Price (CHF)")],
examples=[
[4.5, 120, 500, "Dietlikon"],
[3.5, 60, 250, "Winterthur"]
],
description="Predict apartment prices in Zürich based on rooms, area, proximity to public transportation, and location."
)
iface.launch() |