Sachi Wagaarachchi commited on
Commit
8483978
·
1 Parent(s): 24e6560

refactor update

Browse files
app.py DELETED
@@ -1,64 +0,0 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pyproject.toml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "gradio-qwen-app"
7
+ version = "0.1.0"
8
+ description = "Gradio app with Qwen models"
9
+ requires-python = ">=3.12"
10
+ dependencies = [
11
+ "gradio>=4.0.0",
12
+ "transformers>=4.38.0",
13
+ "torch>=2.0.0",
14
+ "accelerate>=0.25.0",
15
+ "huggingface_hub==0.25.2",
16
+ ]
17
+
18
+ [tool.setuptools]
19
+ packages.find.where = ["src"]
requirements.txt DELETED
@@ -1 +0,0 @@
1
- huggingface_hub==0.25.2
 
 
run.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Run script for the Gradio Qwen application.
4
+ This script imports and launches the Gradio app from the src package.
5
+ """
6
+
7
+ from src.app import demo
8
+
9
+ if __name__ == "__main__":
10
+ demo.launch()
src/__init__.py ADDED
File without changes
src/app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from src.models import ModelManager
3
+ from src.chat_logic import ChatProcessor
4
+ from src.vector_db import VectorDBHandler
5
+ import logging
6
+
7
+ # Initialize components
8
+ model_manager = ModelManager()
9
+ vector_db = VectorDBHandler()
10
+ chat_processor = ChatProcessor(model_manager, vector_db)
11
+
12
+ # Configure logging
13
+ logging.basicConfig(level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
+ def respond(
17
+ message,
18
+ history: list[tuple[str, str]],
19
+ model_name: str,
20
+ system_message: str = "You are a Qwen3 assistant.",
21
+ max_new_tokens: int = 512,
22
+ temperature: float = 0.7,
23
+ top_p: float = 0.9,
24
+ top_k: int = 50,
25
+ repetition_penalty: float = 1.2
26
+ ):
27
+ """Process chat using the ChatProcessor with streaming support"""
28
+ try:
29
+ # Process chat through ChatProcessor
30
+ response_generator = chat_processor.process_chat(
31
+ message=message,
32
+ history=history,
33
+ model_name=model_name,
34
+ temperature=temperature,
35
+ max_new_tokens=max_new_tokens,
36
+ top_p=top_p,
37
+ top_k=top_k,
38
+ repetition_penalty=repetition_penalty
39
+ )
40
+
41
+ # Stream response tokens
42
+ response = ""
43
+ for token in response_generator:
44
+ response += token
45
+ yield response
46
+
47
+ except Exception as e:
48
+ logger.error(f"Chat response error: {str(e)}")
49
+ yield f"Error: {str(e)}"
50
+
51
+
52
+ # Create Gradio interface
53
+ demo = gr.ChatInterface(
54
+ respond,
55
+ additional_inputs=[
56
+ gr.Dropdown(
57
+ choices=["Qwen3-14B", "Qwen3-7B"],
58
+ value="Qwen3-7B",
59
+ label="Model Selection"
60
+ ),
61
+ gr.Textbox(value="You are a Qwen3 assistant.", label="System message"),
62
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
63
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
64
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
65
+ gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"),
66
+ gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition penalty")
67
+ ],
68
+ )
69
+
70
+
71
+ if __name__ == "__main__":
72
+ demo.launch()
src/chat_logic.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import TextIteratorStreamer
2
+ import threading
3
+ from src.utils import format_prompt
4
+ import logging
5
+
6
+ class ChatProcessor:
7
+ """Processes chat interactions using Qwen models"""
8
+ def __init__(self, model_manager, vector_db):
9
+ self.model_manager = model_manager
10
+ self.vector_db = vector_db
11
+ self.logger = logging.getLogger(__name__)
12
+
13
+ def process_chat(self, message, history, model_name, temperature=0.7,
14
+ max_new_tokens=512, top_p=0.9, top_k=50, repetition_penalty=1.2):
15
+ """Process chat input and generate streaming response"""
16
+ try:
17
+ # Format prompt with history
18
+ prompt = format_prompt(message, history)
19
+
20
+ # Get model pipeline
21
+ pipe = self.model_manager.get_pipeline(model_name)
22
+
23
+ # Set up streamer
24
+ streamer = TextIteratorStreamer(
25
+ pipe.tokenizer,
26
+ skip_prompt=True,
27
+ skip_special_tokens=True
28
+ )
29
+
30
+ # Prepare generation kwargs
31
+ generate_kwargs = {
32
+ "input_ids": pipe.tokenizer(prompt, return_tensors="pt").input_ids,
33
+ "max_new_tokens": max_new_tokens,
34
+ "temperature": temperature,
35
+ "top_p": top_p,
36
+ "top_k": top_k,
37
+ "repetition_penalty": repetition_penalty,
38
+ "streamer": streamer
39
+ }
40
+
41
+ # Start generation thread
42
+ thread = threading.Thread(target=pipe.model.generate, kwargs=generate_kwargs)
43
+ thread.start()
44
+
45
+ # Stream response
46
+ response = ""
47
+ for token in streamer:
48
+ response += token
49
+ yield token
50
+
51
+ # Update history (handled by Gradio UI)
52
+ return response
53
+
54
+ except Exception as e:
55
+ self.logger.error(f"Chat processing error: {str(e)}")
56
+ yield f"Error: {str(e)}"
src/gradio_qwen_app.egg-info/PKG-INFO ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.4
2
+ Name: gradio-qwen-app
3
+ Version: 0.1.0
4
+ Summary: Gradio app with Qwen models
5
+ Requires-Python: >=3.12
6
+ Requires-Dist: gradio>=4.0.0
7
+ Requires-Dist: transformers>=4.38.0
8
+ Requires-Dist: torch>=2.0.0
9
+ Requires-Dist: accelerate>=0.25.0
10
+ Requires-Dist: huggingface_hub==0.25.2
src/gradio_qwen_app.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ README.md
2
+ pyproject.toml
3
+ src/gradio_qwen_app.egg-info/PKG-INFO
4
+ src/gradio_qwen_app.egg-info/SOURCES.txt
5
+ src/gradio_qwen_app.egg-info/dependency_links.txt
6
+ src/gradio_qwen_app.egg-info/requires.txt
7
+ src/gradio_qwen_app.egg-info/top_level.txt
src/gradio_qwen_app.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
src/gradio_qwen_app.egg-info/requires.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio>=4.0.0
2
+ transformers>=4.38.0
3
+ torch>=2.0.0
4
+ accelerate>=0.25.0
5
+ huggingface_hub==0.25.2
src/gradio_qwen_app.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
src/models.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ import logging
3
+
4
+ class ModelManager:
5
+ """Manages loading and caching of Qwen models"""
6
+ def __init__(self):
7
+ self.models = {
8
+ "Qwen3-14B": "Qwen/Qwen3-14B",
9
+ "Qwen3-7B": "Qwen/Qwen3-7B"
10
+ }
11
+ self._pipelines = {}
12
+ self.logger = logging.getLogger(__name__)
13
+
14
+ def get_pipeline(self, model_name):
15
+ """Get or create a model pipeline"""
16
+ if model_name in self._pipelines:
17
+ return self._pipelines[model_name]
18
+
19
+ try:
20
+ model_id = self.models[model_name]
21
+ self.logger.info(f"Loading model: {model_id}")
22
+ pipe = pipeline(
23
+ "text-generation",
24
+ model=model_id,
25
+ device_map="auto"
26
+ )
27
+ self._pipelines[model_name] = pipe
28
+ return pipe
29
+ except KeyError:
30
+ raise ValueError(f"Model {model_name} not found in available models")
src/utils.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def format_prompt(message, history):
2
+ """Format message and history into a prompt for Qwen models"""
3
+ if not history:
4
+ return message
5
+
6
+ # Convert history to string format
7
+ prompt = ""
8
+ for user_msg, assistant_msg in history:
9
+ prompt += f"<|User|>: {user_msg}\n<|Assistant|>: {assistant_msg}\n"
10
+
11
+ # Add current message
12
+ prompt += f"<|User|>: {message}\n<|Assistant|>:"
13
+ return prompt
src/vector_db.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ class VectorDBHandler:
2
+ """Placeholder for vector database operations"""
3
+ def __init__(self):
4
+ pass
5
+
6
+ def retrieve(self, query, k=5):
7
+ """Retrieve relevant documents from vector database"""
8
+ # Placeholder implementation
9
+ return []