bluenevus's picture
Create app.py
a18a113 verified
raw
history blame
2.7 kB
import gradio as gr
import torchaudio
import torchaudio.transforms as T
from transformers import pipeline
import requests
from pydub import AudioSegment
from pydub.silence import split_on_silence
import io
import os
# Load the transcription model
transcription_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
def download_audio_from_url(url):
response = requests.get(url)
audio_bytes = response.content
return audio_bytes
def transcribe_audio(audio_bytes):
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
audio.export("temp_audio.wav", format="wav")
waveform, sample_rate = torchaudio.load("temp_audio.wav")
os.remove("temp_audio.wav")
# Transcribe the audio
result = transcription_pipeline(waveform, chunk_length_s=30)
transcript = result['text']
# Split transcript into paragraphs based on silence
chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40)
paragraphs = []
current_paragraph = ""
for chunk in chunks:
chunk.export("temp_chunk.wav", format="wav")
waveform, sample_rate = torchaudio.load("temp_chunk.wav")
os.remove("temp_chunk.wav")
chunk_result = transcription_pipeline(waveform, chunk_length_s=30)
chunk_transcript = chunk_result['text']
if chunk_transcript:
if current_paragraph:
current_paragraph += " " + chunk_transcript
else:
current_paragraph = chunk_transcript
else:
if current_paragraph:
paragraphs.append(current_paragraph)
current_paragraph = ""
if current_paragraph:
paragraphs.append(current_paragraph)
formatted_transcript = "\n\n".join(paragraphs)
return formatted_transcript
def transcribe_video(url):
audio_bytes = download_audio_from_url(url)
transcript = transcribe_audio(audio_bytes)
return transcript
def download_transcript(transcript):
return transcript, "transcript.txt"
# Create the Gradio interface
with gr.Blocks(title="Video Transcription") as demo:
gr.Markdown("# Video Transcription")
video_url = gr.Textbox(label="Video URL")
transcribe_button = gr.Button("Transcribe")
transcript_output = gr.Textbox(label="Transcript", lines=20)
download_button = gr.Button("Download Transcript")
download_link = gr.File(label="Download Transcript")
transcribe_button.click(fn=transcribe_video, inputs=video_url, outputs=transcript_output)
download_button.click(fn=download_transcript, inputs=transcript_output, outputs=[download_link, download_link])
demo.launch()