bluenevus's picture
Update app.py
df42ab3 verified
raw
history blame
8.64 kB
import io
import re
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import requests
from bs4 import BeautifulSoup
import tempfile
import os
import soundfile as sf
from spellchecker import SpellChecker
from pydub import AudioSegment
import librosa
import numpy as np
from pyannote.audio import Pipeline
import dash
from dash import dcc, html, Input, Output, State
import dash_bootstrap_components as dbc
from dash.exceptions import PreventUpdate
import base64
import threading
from pytube import YouTube
print("Script started")
# Check if CUDA is available and set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load the Whisper model and processor
model_name = "openai/whisper-small"
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
spell = SpellChecker()
def download_audio_from_url(url):
try:
if "youtube.com" in url or "youtu.be" in url:
print("Processing YouTube URL...")
yt = YouTube(url)
audio_stream = yt.streams.filter(only_audio=True).first()
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
audio_stream.download(output_path=temp_file.name)
audio_bytes = open(temp_file.name, "rb").read()
os.unlink(temp_file.name)
elif "share" in url:
print("Processing shareable link...")
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
video_tag = soup.find('video')
if video_tag and 'src' in video_tag.attrs:
video_url = video_tag['src']
print(f"Extracted video URL: {video_url}")
else:
raise ValueError("Direct video URL not found in the shareable link.")
response = requests.get(video_url)
audio_bytes = response.content
else:
print(f"Downloading video from URL: {url}")
response = requests.get(url)
audio_bytes = response.content
print(f"Successfully downloaded {len(audio_bytes)} bytes of data")
return audio_bytes
except Exception as e:
print(f"Error in download_audio_from_url: {str(e)}")
raise
def correct_spelling(text):
words = text.split()
corrected_words = [spell.correction(word) or word for word in words]
return ' '.join(corrected_words)
def format_transcript_with_speakers(transcript, diarization):
formatted_transcript = []
current_speaker = None
for segment, _, speaker in diarization.itertracks(yield_label=True):
start = segment.start
end = segment.end
if speaker != current_speaker:
if current_speaker is not None:
formatted_transcript.append("\n") # Add a blank line between speakers
formatted_transcript.append(f"Speaker {speaker}:\n")
current_speaker = speaker
segment_text = transcript[start:end].strip()
if segment_text:
formatted_transcript.append(f"{segment_text}\n")
return "".join(formatted_transcript)
def transcribe_audio(audio_file, pipeline):
try:
if pipeline is None:
raise ValueError("Speaker diarization pipeline is not initialized")
print("Loading audio file...")
audio_input, sr = librosa.load(audio_file, sr=16000)
audio_input = audio_input.astype(np.float32)
print(f"Audio duration: {len(audio_input) / sr:.2f} seconds")
# Apply speaker diarization
print("Applying speaker diarization...")
diarization = pipeline(audio_file)
print("Speaker diarization complete.")
chunk_length = 30 * sr
overlap = 5 * sr
transcriptions = []
print("Starting transcription...")
for i in range(0, len(audio_input), chunk_length - overlap):
chunk = audio_input[i:i+chunk_length]
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
transcriptions.extend(transcription)
print(f"Processed {i / sr:.2f} to {(i + chunk_length) / sr:.2f} seconds")
full_transcription = " ".join(transcriptions)
print(f"Transcription complete. Full transcription length: {len(full_transcription)} characters")
print("Applying formatting with speaker diarization...")
formatted_transcription = format_transcript_with_speakers(full_transcription, diarization)
return formatted_transcription
except Exception as e:
print(f"Error in transcribe_audio: {str(e)}")
raise
def transcribe_video(url, pipeline):
try:
print(f"Attempting to download audio from URL: {url}")
audio_bytes = download_audio_from_url(url)
print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data")
# Convert audio bytes to AudioSegment
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
print(f"Audio duration: {len(audio) / 1000} seconds")
# Save as WAV file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
audio.export(temp_audio.name, format="wav")
temp_audio_path = temp_audio.name
print("Starting audio transcription...")
transcript = transcribe_audio(temp_audio_path, pipeline)
print(f"Transcription completed. Transcript length: {len(transcript)} characters")
# Clean up the temporary file
os.unlink(temp_audio_path)
# Apply spelling correction
transcript = correct_spelling(transcript)
return transcript
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message)
return error_message
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("Video Transcription", className="text-center mb-4"),
dbc.Card([
dbc.CardBody([
dbc.Input(id="video-url", type="text", placeholder="Enter video URL"),
dbc.Button("Transcribe", id="transcribe-button", color="primary", className="mt-3"),
dbc.Spinner(html.Div(id="transcription-output", className="mt-3")),
dcc.Download(id="download-transcript")
])
])
], width=12)
])
], fluid=True)
@app.callback(
Output("transcription-output", "children"),
Output("download-transcript", "data"),
Input("transcribe-button", "n_clicks"),
State("video-url", "value"),
prevent_initial_call=True
)
def update_transcription(n_clicks, url):
if not url:
raise PreventUpdate
def transcribe():
try:
# Initialize the speaker diarization pipeline without token
pipeline = Pipeline.from_pretrained("collinbarnwell/pyannote-speaker-diarization-31")
if pipeline is None:
raise ValueError("Failed to initialize the speaker diarization pipeline")
print("Speaker diarization pipeline initialized successfully")
transcript = transcribe_video(url, pipeline)
return transcript
except Exception as e:
return f"An error occurred: {str(e)}"
# Run transcription in a separate thread
thread = threading.Thread(target=transcribe)
thread.start()
thread.join()
transcript = thread.result if hasattr(thread, 'result') else "Transcription failed"
if transcript and not transcript.startswith("An error occurred"):
download_data = dict(content=transcript, filename="transcript.txt")
return dbc.Card([
dbc.CardBody([
html.H5("Transcription Result"),
html.Pre(transcript, style={"white-space": "pre-wrap", "word-wrap": "break-word"}),
dbc.Button("Download Transcript", id="btn-download", color="secondary", className="mt-3")
])
]), download_data
else:
return transcript, None
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.")