Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_na
|
|
27 |
# Load the Qwen model and tokenizer
|
28 |
qwen_model_name = "Qwen/Qwen2.5-3B-Instruct"
|
29 |
qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
|
30 |
-
qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True
|
31 |
|
32 |
def download_audio_from_url(url):
|
33 |
try:
|
@@ -86,6 +86,8 @@ def transcribe_audio(audio_file):
|
|
86 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
87 |
|
88 |
print(f"Transcription complete. Length: {len(transcription[0])} characters")
|
|
|
|
|
89 |
return transcription[0]
|
90 |
except Exception as e:
|
91 |
print(f"Error in transcribe_audio: {str(e)}")
|
@@ -95,7 +97,7 @@ def separate_speakers(transcription):
|
|
95 |
print("Starting speaker separation...")
|
96 |
prompt = f"""Analyze the following transcribed text and separate it into different speakers. Identify potential speaker changes based on context, content shifts, or dialogue patterns. Format the output as follows:
|
97 |
|
98 |
-
1. Label speakers as "Speaker 1", "Speaker 2", etc.
|
99 |
2. Start each speaker's text on a new line beginning with their label.
|
100 |
3. Separate different speakers' contributions with a blank line.
|
101 |
4. If the same speaker continues, do not insert a blank line or repeat the speaker label.
|
@@ -106,7 +108,6 @@ Now, please process the following transcribed text:
|
|
106 |
"""
|
107 |
|
108 |
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(device)
|
109 |
-
inputs = {k: v.to(torch.float16) for k, v in inputs.items()} # Convert inputs to float16
|
110 |
with torch.no_grad():
|
111 |
outputs = qwen_model.generate(**inputs, max_new_tokens=4000)
|
112 |
result = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -116,7 +117,7 @@ Now, please process the following transcribed text:
|
|
116 |
|
117 |
print("Speaker separation complete.")
|
118 |
return processed_text
|
119 |
-
|
120 |
def transcribe_video(url):
|
121 |
try:
|
122 |
print(f"Attempting to download audio from URL: {url}")
|
@@ -129,6 +130,9 @@ def transcribe_video(url):
|
|
129 |
|
130 |
os.unlink(temp_audio.name)
|
131 |
|
|
|
|
|
|
|
132 |
print("Separating speakers...")
|
133 |
separated_transcript = separate_speakers(transcript)
|
134 |
|
|
|
27 |
# Load the Qwen model and tokenizer
|
28 |
qwen_model_name = "Qwen/Qwen2.5-3B-Instruct"
|
29 |
qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
|
30 |
+
qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True).to(device)
|
31 |
|
32 |
def download_audio_from_url(url):
|
33 |
try:
|
|
|
86 |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
87 |
|
88 |
print(f"Transcription complete. Length: {len(transcription[0])} characters")
|
89 |
+
if len(transcription[0]) < 10:
|
90 |
+
raise ValueError(f"Transcription too short: {transcription[0]}")
|
91 |
return transcription[0]
|
92 |
except Exception as e:
|
93 |
print(f"Error in transcribe_audio: {str(e)}")
|
|
|
97 |
print("Starting speaker separation...")
|
98 |
prompt = f"""Analyze the following transcribed text and separate it into different speakers. Identify potential speaker changes based on context, content shifts, or dialogue patterns. Format the output as follows:
|
99 |
|
100 |
+
1. Label speakers as "Speaker 1", "Speaker 2", etc.
|
101 |
2. Start each speaker's text on a new line beginning with their label.
|
102 |
3. Separate different speakers' contributions with a blank line.
|
103 |
4. If the same speaker continues, do not insert a blank line or repeat the speaker label.
|
|
|
108 |
"""
|
109 |
|
110 |
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
111 |
with torch.no_grad():
|
112 |
outputs = qwen_model.generate(**inputs, max_new_tokens=4000)
|
113 |
result = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
117 |
|
118 |
print("Speaker separation complete.")
|
119 |
return processed_text
|
120 |
+
|
121 |
def transcribe_video(url):
|
122 |
try:
|
123 |
print(f"Attempting to download audio from URL: {url}")
|
|
|
130 |
|
131 |
os.unlink(temp_audio.name)
|
132 |
|
133 |
+
if len(transcript) < 10:
|
134 |
+
raise ValueError("Transcription too short, possibly failed")
|
135 |
+
|
136 |
print("Separating speakers...")
|
137 |
separated_transcript = separate_speakers(transcript)
|
138 |
|