Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_na
|
|
27 |
# Load the Qwen model and tokenizer
|
28 |
qwen_model_name = "Qwen/Qwen2.5-3B-Instruct"
|
29 |
qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
|
30 |
-
qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True).to(device)
|
31 |
|
32 |
def download_audio_from_url(url):
|
33 |
try:
|
@@ -85,7 +85,7 @@ def separate_speakers(transcription):
|
|
85 |
print("Starting speaker separation...")
|
86 |
prompt = f"""Analyze the following transcribed text and separate it into different speakers. Identify potential speaker changes based on context, content shifts, or dialogue patterns. Format the output as follows:
|
87 |
|
88 |
-
1. Label speakers as "Speaker 1", "Speaker 2", etc.
|
89 |
2. Start each speaker's text on a new line beginning with their label.
|
90 |
3. Separate different speakers' contributions with a blank line.
|
91 |
4. If the same speaker continues, do not insert a blank line or repeat the speaker label.
|
@@ -96,6 +96,7 @@ Now, please process the following transcribed text:
|
|
96 |
"""
|
97 |
|
98 |
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
99 |
with torch.no_grad():
|
100 |
outputs = qwen_model.generate(**inputs, max_new_tokens=4000)
|
101 |
result = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -105,7 +106,7 @@ Now, please process the following transcribed text:
|
|
105 |
|
106 |
print("Speaker separation complete.")
|
107 |
return processed_text
|
108 |
-
|
109 |
def transcribe_video(url):
|
110 |
try:
|
111 |
print(f"Attempting to download audio from URL: {url}")
|
|
|
27 |
# Load the Qwen model and tokenizer
|
28 |
qwen_model_name = "Qwen/Qwen2.5-3B-Instruct"
|
29 |
qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
|
30 |
+
qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True, torch_dtype=torch.float16).to(device)
|
31 |
|
32 |
def download_audio_from_url(url):
|
33 |
try:
|
|
|
85 |
print("Starting speaker separation...")
|
86 |
prompt = f"""Analyze the following transcribed text and separate it into different speakers. Identify potential speaker changes based on context, content shifts, or dialogue patterns. Format the output as follows:
|
87 |
|
88 |
+
1. Label speakers as "Speaker 1", "Speaker 2", etc. You will have to use dialog context to asume which speaker is saying their dialog as that isn't in the text.
|
89 |
2. Start each speaker's text on a new line beginning with their label.
|
90 |
3. Separate different speakers' contributions with a blank line.
|
91 |
4. If the same speaker continues, do not insert a blank line or repeat the speaker label.
|
|
|
96 |
"""
|
97 |
|
98 |
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(device)
|
99 |
+
inputs = {k: v.to(torch.float16) for k, v in inputs.items()} # Convert inputs to float16
|
100 |
with torch.no_grad():
|
101 |
outputs = qwen_model.generate(**inputs, max_new_tokens=4000)
|
102 |
result = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
106 |
|
107 |
print("Speaker separation complete.")
|
108 |
return processed_text
|
109 |
+
|
110 |
def transcribe_video(url):
|
111 |
try:
|
112 |
print(f"Attempting to download audio from URL: {url}")
|