Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,15 @@
|
|
1 |
import io
|
2 |
-
import re
|
3 |
import torch
|
4 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
5 |
import requests
|
6 |
from bs4 import BeautifulSoup
|
7 |
import tempfile
|
8 |
import os
|
9 |
-
import soundfile as sf
|
10 |
-
from spellchecker import SpellChecker
|
11 |
from pydub import AudioSegment
|
12 |
-
import librosa
|
13 |
-
import numpy as np
|
14 |
-
from pyannote.audio import Pipeline
|
15 |
import dash
|
16 |
from dash import dcc, html, Input, Output, State
|
17 |
import dash_bootstrap_components as dbc
|
18 |
from dash.exceptions import PreventUpdate
|
19 |
-
import base64
|
20 |
import threading
|
21 |
from pytube import YouTube
|
22 |
|
@@ -31,8 +24,6 @@ model_name = "openai/whisper-small"
|
|
31 |
processor = WhisperProcessor.from_pretrained(model_name)
|
32 |
model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
|
33 |
|
34 |
-
spell = SpellChecker()
|
35 |
-
|
36 |
def download_audio_from_url(url):
|
37 |
try:
|
38 |
if "youtube.com" in url or "youtu.be" in url:
|
@@ -66,92 +57,35 @@ def download_audio_from_url(url):
|
|
66 |
print(f"Error in download_audio_from_url: {str(e)}")
|
67 |
raise
|
68 |
|
69 |
-
def
|
70 |
-
words = text.split()
|
71 |
-
corrected_words = [spell.correction(word) or word for word in words]
|
72 |
-
return ' '.join(corrected_words)
|
73 |
-
|
74 |
-
def format_transcript_with_speakers(transcript, diarization):
|
75 |
-
formatted_transcript = []
|
76 |
-
current_speaker = None
|
77 |
-
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
78 |
-
start = segment.start
|
79 |
-
end = segment.end
|
80 |
-
if speaker != current_speaker:
|
81 |
-
if current_speaker is not None:
|
82 |
-
formatted_transcript.append("\n") # Add a blank line between speakers
|
83 |
-
formatted_transcript.append(f"Speaker {speaker}:\n")
|
84 |
-
current_speaker = speaker
|
85 |
-
segment_text = transcript[start:end].strip()
|
86 |
-
if segment_text:
|
87 |
-
formatted_transcript.append(f"{segment_text}\n")
|
88 |
-
return "".join(formatted_transcript)
|
89 |
-
|
90 |
-
def transcribe_audio(audio_file, pipeline):
|
91 |
try:
|
92 |
-
if pipeline is None:
|
93 |
-
raise ValueError("Speaker diarization pipeline is not initialized")
|
94 |
-
|
95 |
print("Loading audio file...")
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
# Apply speaker diarization
|
101 |
-
print("Applying speaker diarization...")
|
102 |
-
diarization = pipeline(audio_file)
|
103 |
-
print("Speaker diarization complete.")
|
104 |
-
|
105 |
-
chunk_length = 30 * sr
|
106 |
-
overlap = 5 * sr
|
107 |
-
transcriptions = []
|
108 |
|
109 |
print("Starting transcription...")
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
print(f"Processed {i / sr:.2f} to {(i + chunk_length) / sr:.2f} seconds")
|
117 |
-
|
118 |
-
full_transcription = " ".join(transcriptions)
|
119 |
-
print(f"Transcription complete. Full transcription length: {len(full_transcription)} characters")
|
120 |
-
|
121 |
-
print("Applying formatting with speaker diarization...")
|
122 |
-
formatted_transcription = format_transcript_with_speakers(full_transcription, diarization)
|
123 |
-
|
124 |
-
return formatted_transcription
|
125 |
except Exception as e:
|
126 |
print(f"Error in transcribe_audio: {str(e)}")
|
127 |
raise
|
128 |
|
129 |
-
def transcribe_video(url
|
130 |
try:
|
131 |
print(f"Attempting to download audio from URL: {url}")
|
132 |
audio_bytes = download_audio_from_url(url)
|
133 |
print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data")
|
134 |
|
135 |
-
# Convert audio bytes to AudioSegment
|
136 |
-
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
|
137 |
-
|
138 |
-
print(f"Audio duration: {len(audio) / 1000} seconds")
|
139 |
-
|
140 |
-
# Save as WAV file
|
141 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
print("Starting audio transcription...")
|
146 |
-
transcript = transcribe_audio(temp_audio_path, pipeline)
|
147 |
-
print(f"Transcription completed. Transcript length: {len(transcript)} characters")
|
148 |
|
149 |
-
|
150 |
-
os.unlink(temp_audio_path)
|
151 |
-
|
152 |
-
# Apply spelling correction
|
153 |
-
transcript = correct_spelling(transcript)
|
154 |
-
|
155 |
return transcript
|
156 |
except Exception as e:
|
157 |
error_message = f"An error occurred: {str(e)}"
|
@@ -189,13 +123,7 @@ def update_transcription(n_clicks, url):
|
|
189 |
|
190 |
def transcribe():
|
191 |
try:
|
192 |
-
|
193 |
-
pipeline = Pipeline.from_pretrained("collinbarnwell/pyannote-speaker-diarization-31")
|
194 |
-
if pipeline is None:
|
195 |
-
raise ValueError("Failed to initialize the speaker diarization pipeline")
|
196 |
-
print("Speaker diarization pipeline initialized successfully")
|
197 |
-
|
198 |
-
transcript = transcribe_video(url, pipeline)
|
199 |
return transcript
|
200 |
except Exception as e:
|
201 |
return f"An error occurred: {str(e)}"
|
@@ -218,7 +146,9 @@ def update_transcription(n_clicks, url):
|
|
218 |
]), download_data
|
219 |
else:
|
220 |
return transcript, None
|
221 |
-
|
|
|
|
|
222 |
if __name__ == '__main__':
|
223 |
print("Starting the Dash application...")
|
224 |
app.run(debug=True, host='0.0.0.0', port=7860)
|
|
|
1 |
import io
|
|
|
2 |
import torch
|
3 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
4 |
import requests
|
5 |
from bs4 import BeautifulSoup
|
6 |
import tempfile
|
7 |
import os
|
|
|
|
|
8 |
from pydub import AudioSegment
|
|
|
|
|
|
|
9 |
import dash
|
10 |
from dash import dcc, html, Input, Output, State
|
11 |
import dash_bootstrap_components as dbc
|
12 |
from dash.exceptions import PreventUpdate
|
|
|
13 |
import threading
|
14 |
from pytube import YouTube
|
15 |
|
|
|
24 |
processor = WhisperProcessor.from_pretrained(model_name)
|
25 |
model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
|
26 |
|
|
|
|
|
27 |
def download_audio_from_url(url):
|
28 |
try:
|
29 |
if "youtube.com" in url or "youtu.be" in url:
|
|
|
57 |
print(f"Error in download_audio_from_url: {str(e)}")
|
58 |
raise
|
59 |
|
60 |
+
def transcribe_audio(audio_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
try:
|
|
|
|
|
|
|
62 |
print("Loading audio file...")
|
63 |
+
audio = AudioSegment.from_file(audio_file)
|
64 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
65 |
+
audio_array = audio.get_array_of_samples()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
print("Starting transcription...")
|
68 |
+
input_features = processor(audio_array, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
69 |
+
predicted_ids = model.generate(input_features)
|
70 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
71 |
+
|
72 |
+
print(f"Transcription complete. Length: {len(transcription[0])} characters")
|
73 |
+
return transcription[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
except Exception as e:
|
75 |
print(f"Error in transcribe_audio: {str(e)}")
|
76 |
raise
|
77 |
|
78 |
+
def transcribe_video(url):
|
79 |
try:
|
80 |
print(f"Attempting to download audio from URL: {url}")
|
81 |
audio_bytes = download_audio_from_url(url)
|
82 |
print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data")
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
85 |
+
AudioSegment.from_file(io.BytesIO(audio_bytes)).export(temp_audio.name, format="wav")
|
86 |
+
transcript = transcribe_audio(temp_audio.name)
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
os.unlink(temp_audio.name)
|
|
|
|
|
|
|
|
|
|
|
89 |
return transcript
|
90 |
except Exception as e:
|
91 |
error_message = f"An error occurred: {str(e)}"
|
|
|
123 |
|
124 |
def transcribe():
|
125 |
try:
|
126 |
+
transcript = transcribe_video(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
return transcript
|
128 |
except Exception as e:
|
129 |
return f"An error occurred: {str(e)}"
|
|
|
146 |
]), download_data
|
147 |
else:
|
148 |
return transcript, None
|
149 |
+
|
150 |
+
print("Reached end of script definitions")
|
151 |
+
|
152 |
if __name__ == '__main__':
|
153 |
print("Starting the Dash application...")
|
154 |
app.run(debug=True, host='0.0.0.0', port=7860)
|