Update app.py
Browse files
app.py
CHANGED
@@ -20,10 +20,6 @@ import base64
|
|
20 |
import threading
|
21 |
from pytube import YouTube
|
22 |
|
23 |
-
# Initialize the speaker diarization pipeline
|
24 |
-
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="YOUR_HF_AUTH_TOKEN")
|
25 |
-
print("Speaker diarization pipeline initialized successfully")
|
26 |
-
|
27 |
# Check if CUDA is available and set the device
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
print(f"Using device: {device}")
|
@@ -89,7 +85,7 @@ def format_transcript_with_speakers(transcript, diarization):
|
|
89 |
formatted_transcript.append(f"{segment_text}\n")
|
90 |
return "".join(formatted_transcript)
|
91 |
|
92 |
-
def transcribe_audio(audio_file):
|
93 |
try:
|
94 |
print("Loading audio file...")
|
95 |
audio_input, sr = librosa.load(audio_file, sr=16000)
|
@@ -125,7 +121,7 @@ def transcribe_audio(audio_file):
|
|
125 |
print(f"Error in transcribe_audio: {str(e)}")
|
126 |
raise
|
127 |
|
128 |
-
def transcribe_video(url):
|
129 |
try:
|
130 |
print(f"Attempting to download audio from URL: {url}")
|
131 |
audio_bytes = download_audio_from_url(url)
|
@@ -142,7 +138,7 @@ def transcribe_video(url):
|
|
142 |
temp_audio_path = temp_audio.name
|
143 |
|
144 |
print("Starting audio transcription...")
|
145 |
-
transcript = transcribe_audio(temp_audio_path)
|
146 |
print(f"Transcription completed. Transcript length: {len(transcript)} characters")
|
147 |
|
148 |
# Clean up the temporary file
|
@@ -165,6 +161,7 @@ app.layout = dbc.Container([
|
|
165 |
html.H1("Video Transcription", className="text-center mb-4"),
|
166 |
dbc.Card([
|
167 |
dbc.CardBody([
|
|
|
168 |
dbc.Input(id="video-url", type="text", placeholder="Enter video URL"),
|
169 |
dbc.Button("Transcribe", id="transcribe-button", color="primary", className="mt-3"),
|
170 |
dbc.Spinner(html.Div(id="transcription-output", className="mt-3")),
|
@@ -179,16 +176,24 @@ app.layout = dbc.Container([
|
|
179 |
Output("transcription-output", "children"),
|
180 |
Output("download-transcript", "data"),
|
181 |
Input("transcribe-button", "n_clicks"),
|
|
|
182 |
State("video-url", "value"),
|
183 |
prevent_initial_call=True
|
184 |
)
|
185 |
-
def update_transcription(n_clicks, url):
|
186 |
-
if not url:
|
187 |
raise PreventUpdate
|
188 |
|
189 |
def transcribe():
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
# Run transcription in a separate thread
|
194 |
thread = threading.Thread(target=transcribe)
|
@@ -197,7 +202,7 @@ def update_transcription(n_clicks, url):
|
|
197 |
|
198 |
transcript = transcribe()
|
199 |
|
200 |
-
if transcript:
|
201 |
download_data = dict(content=transcript, filename="transcript.txt")
|
202 |
return dbc.Card([
|
203 |
dbc.CardBody([
|
@@ -207,7 +212,7 @@ def update_transcription(n_clicks, url):
|
|
207 |
])
|
208 |
]), download_data
|
209 |
else:
|
210 |
-
return
|
211 |
|
212 |
if __name__ == '__main__':
|
213 |
app.run(debug=True, host='0.0.0.0', port=7860)
|
|
|
20 |
import threading
|
21 |
from pytube import YouTube
|
22 |
|
|
|
|
|
|
|
|
|
23 |
# Check if CUDA is available and set the device
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
print(f"Using device: {device}")
|
|
|
85 |
formatted_transcript.append(f"{segment_text}\n")
|
86 |
return "".join(formatted_transcript)
|
87 |
|
88 |
+
def transcribe_audio(audio_file, pipeline):
|
89 |
try:
|
90 |
print("Loading audio file...")
|
91 |
audio_input, sr = librosa.load(audio_file, sr=16000)
|
|
|
121 |
print(f"Error in transcribe_audio: {str(e)}")
|
122 |
raise
|
123 |
|
124 |
+
def transcribe_video(url, pipeline):
|
125 |
try:
|
126 |
print(f"Attempting to download audio from URL: {url}")
|
127 |
audio_bytes = download_audio_from_url(url)
|
|
|
138 |
temp_audio_path = temp_audio.name
|
139 |
|
140 |
print("Starting audio transcription...")
|
141 |
+
transcript = transcribe_audio(temp_audio_path, pipeline)
|
142 |
print(f"Transcription completed. Transcript length: {len(transcript)} characters")
|
143 |
|
144 |
# Clean up the temporary file
|
|
|
161 |
html.H1("Video Transcription", className="text-center mb-4"),
|
162 |
dbc.Card([
|
163 |
dbc.CardBody([
|
164 |
+
dbc.Input(id="hf-token", type="password", placeholder="Enter Hugging Face Token", className="mb-3"),
|
165 |
dbc.Input(id="video-url", type="text", placeholder="Enter video URL"),
|
166 |
dbc.Button("Transcribe", id="transcribe-button", color="primary", className="mt-3"),
|
167 |
dbc.Spinner(html.Div(id="transcription-output", className="mt-3")),
|
|
|
176 |
Output("transcription-output", "children"),
|
177 |
Output("download-transcript", "data"),
|
178 |
Input("transcribe-button", "n_clicks"),
|
179 |
+
State("hf-token", "value"),
|
180 |
State("video-url", "value"),
|
181 |
prevent_initial_call=True
|
182 |
)
|
183 |
+
def update_transcription(n_clicks, hf_token, url):
|
184 |
+
if not url or not hf_token:
|
185 |
raise PreventUpdate
|
186 |
|
187 |
def transcribe():
|
188 |
+
try:
|
189 |
+
# Initialize the speaker diarization pipeline with the provided token
|
190 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=hf_token)
|
191 |
+
print("Speaker diarization pipeline initialized successfully")
|
192 |
+
|
193 |
+
transcript = transcribe_video(url, pipeline)
|
194 |
+
return transcript
|
195 |
+
except Exception as e:
|
196 |
+
return f"An error occurred: {str(e)}"
|
197 |
|
198 |
# Run transcription in a separate thread
|
199 |
thread = threading.Thread(target=transcribe)
|
|
|
202 |
|
203 |
transcript = transcribe()
|
204 |
|
205 |
+
if transcript and not transcript.startswith("An error occurred"):
|
206 |
download_data = dict(content=transcript, filename="transcript.txt")
|
207 |
return dbc.Card([
|
208 |
dbc.CardBody([
|
|
|
212 |
])
|
213 |
]), download_data
|
214 |
else:
|
215 |
+
return transcript, None
|
216 |
|
217 |
if __name__ == '__main__':
|
218 |
app.run(debug=True, host='0.0.0.0', port=7860)
|