Update app.py
Browse files
app.py
CHANGED
@@ -70,22 +70,27 @@ def format_transcript(transcript):
|
|
70 |
|
71 |
def transcribe_audio(audio_file):
|
72 |
try:
|
73 |
-
# Load
|
74 |
-
audio_input,
|
75 |
|
76 |
# Convert to float32 numpy array
|
77 |
audio_input = audio_input.astype(np.float32)
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
|
88 |
-
return
|
89 |
except Exception as e:
|
90 |
print(f"Error in transcribe_audio: {str(e)}")
|
91 |
raise
|
@@ -118,8 +123,6 @@ def transcribe_video(url):
|
|
118 |
return transcript
|
119 |
except Exception as e:
|
120 |
error_message = f"An error occurred: {str(e)}"
|
121 |
-
print(error_message)
|
122 |
-
return error_message
|
123 |
|
124 |
def download_transcript(transcript):
|
125 |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as temp_file:
|
|
|
70 |
|
71 |
def transcribe_audio(audio_file):
|
72 |
try:
|
73 |
+
# Load the entire audio file
|
74 |
+
audio_input, sr = librosa.load(audio_file, sr=16000)
|
75 |
|
76 |
# Convert to float32 numpy array
|
77 |
audio_input = audio_input.astype(np.float32)
|
78 |
|
79 |
+
# Process in chunks of 30 seconds
|
80 |
+
chunk_length = 30 * sr
|
81 |
+
transcriptions = []
|
82 |
|
83 |
+
for i in range(0, len(audio_input), chunk_length):
|
84 |
+
chunk = audio_input[i:i+chunk_length]
|
85 |
+
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
86 |
+
predicted_ids = model.generate(input_features)
|
87 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
88 |
+
transcriptions.extend(transcription)
|
89 |
|
90 |
+
# Join all transcriptions
|
91 |
+
full_transcription = " ".join(transcriptions)
|
92 |
|
93 |
+
return full_transcription
|
94 |
except Exception as e:
|
95 |
print(f"Error in transcribe_audio: {str(e)}")
|
96 |
raise
|
|
|
123 |
return transcript
|
124 |
except Exception as e:
|
125 |
error_message = f"An error occurred: {str(e)}"
|
|
|
|
|
126 |
|
127 |
def download_transcript(transcript):
|
128 |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as temp_file:
|