Update app.py
Browse files
app.py
CHANGED
@@ -81,47 +81,21 @@ def format_transcript_with_speakers(transcript, diarization):
|
|
81 |
return "".join(formatted_transcript)
|
82 |
|
83 |
def transcribe_audio(audio_file):
|
84 |
-
|
85 |
-
|
86 |
-
audio_input, sr = librosa.load(audio_file, sr=16000)
|
87 |
-
audio_input = audio_input.astype(np.float32)
|
88 |
-
print(f"Audio duration: {len(audio_input) / sr:.2f} seconds")
|
89 |
-
|
90 |
-
# Apply speaker diarization
|
91 |
-
if pipeline:
|
92 |
-
print("Applying speaker diarization...")
|
93 |
-
diarization = pipeline(audio_file)
|
94 |
-
print("Speaker diarization complete.")
|
95 |
-
else:
|
96 |
-
diarization = None
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
transcriptions = []
|
101 |
-
|
102 |
-
print("Starting transcription...")
|
103 |
-
for i in range(0, len(audio_input), chunk_length - overlap):
|
104 |
-
chunk = audio_input[i:i+chunk_length]
|
105 |
-
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
106 |
-
predicted_ids = model.generate(input_features)
|
107 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
108 |
-
transcriptions.extend(transcription)
|
109 |
-
print(f"Processed {i / sr:.2f} to {(i + chunk_length) / sr:.2f} seconds")
|
110 |
-
|
111 |
-
full_transcription = " ".join(transcriptions)
|
112 |
-
print(f"Transcription complete. Full transcription length: {len(full_transcription)} characters")
|
113 |
-
|
114 |
-
if diarization:
|
115 |
-
print("Applying formatting with speaker diarization...")
|
116 |
-
formatted_transcription = format_transcript_with_speakers(full_transcription, diarization)
|
117 |
-
else:
|
118 |
-
print("Applying formatting without speaker diarization...")
|
119 |
-
formatted_transcription = format_transcript_with_breaks(full_transcription)
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def format_transcript_with_breaks(transcript):
|
127 |
sentences = re.split('(?<=[.!?]) +', transcript)
|
|
|
81 |
return "".join(formatted_transcript)
|
82 |
|
83 |
def transcribe_audio(audio_file):
|
84 |
+
# Perform diarization on the entire audio file
|
85 |
+
diarization = pipeline(audio_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Load the audio
|
88 |
+
audio_input, sr = librosa.load(audio_file, sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Transcribe the entire audio (or use chunking with time tracking if necessary)
|
91 |
+
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
92 |
+
predicted_ids = model.generate(input_features)
|
93 |
+
full_transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
94 |
+
|
95 |
+
# Apply diarization to the full transcription
|
96 |
+
formatted_transcription = format_transcript_with_speakers(full_transcription, diarization)
|
97 |
+
|
98 |
+
return formatted_transcription
|
99 |
|
100 |
def format_transcript_with_breaks(transcript):
|
101 |
sentences = re.split('(?<=[.!?]) +', transcript)
|