Update app.py
Browse files
app.py
CHANGED
@@ -76,12 +76,22 @@ app.layout = dbc.Container([
|
|
76 |
])
|
77 |
], fluid=True)
|
78 |
|
79 |
-
def chunk_audio(audio_segment,
|
80 |
chunks = []
|
81 |
-
for i in range(0, len(audio_segment),
|
82 |
-
chunks.append(audio_segment[i:i+
|
83 |
return chunks
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def process_media(file_path, is_url=False):
|
86 |
global generated_file, transcription_text
|
87 |
temp_file = None
|
@@ -89,22 +99,22 @@ def process_media(file_path, is_url=False):
|
|
89 |
try:
|
90 |
if is_url:
|
91 |
logger.info(f"Processing URL: {file_path}")
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
temp_file.close()
|
103 |
else:
|
104 |
logger.info("Processing uploaded file")
|
105 |
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
106 |
temp_file.write(file_path)
|
107 |
temp_file.close()
|
|
|
108 |
|
109 |
file_extension = os.path.splitext(temp_file.name)[1].lower()
|
110 |
logger.info(f"Detected file extension: {file_extension}")
|
@@ -127,26 +137,20 @@ def process_media(file_path, is_url=False):
|
|
127 |
|
128 |
logger.info(f"Audio extracted to WAV: {wav_path}")
|
129 |
|
|
|
130 |
audio = AudioSegment.from_wav(wav_path)
|
131 |
chunks = chunk_audio(audio)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
with open(chunk_file.name, "rb") as audio_file:
|
140 |
-
transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
141 |
-
full_transcript += transcript.get('text', '') + " "
|
142 |
-
|
143 |
-
os.unlink(chunk_file.name)
|
144 |
-
|
145 |
-
formatted_transcript = full_transcript.strip()
|
146 |
transcription_text = formatted_transcript
|
147 |
generated_file = io.BytesIO(transcription_text.encode())
|
148 |
-
logger.info("Transcription completed successfully")
|
149 |
-
return "Transcription completed successfully!", True
|
150 |
except Exception as e:
|
151 |
logger.error(f"Error during processing: {str(e)}")
|
152 |
return f"An error occurred: {str(e)}", False
|
@@ -197,7 +201,7 @@ def update_output(contents, n_clicks, filename, url):
|
|
197 |
def download_transcription(n_clicks):
|
198 |
if n_clicks is None:
|
199 |
return None
|
200 |
-
return dcc.send_bytes(generated_file.getvalue(), "
|
201 |
|
202 |
if __name__ == '__main__':
|
203 |
print("Starting the Dash application...")
|
|
|
76 |
])
|
77 |
], fluid=True)
|
78 |
|
79 |
+
def chunk_audio(audio_segment, chunk_size_ms=60000):
|
80 |
chunks = []
|
81 |
+
for i in range(0, len(audio_segment), chunk_size_ms):
|
82 |
+
chunks.append(audio_segment[i:i+chunk_size_ms])
|
83 |
return chunks
|
84 |
|
85 |
+
def transcribe_audio_chunks(chunks):
|
86 |
+
transcriptions = []
|
87 |
+
for chunk in chunks:
|
88 |
+
with io.BytesIO() as audio_file:
|
89 |
+
chunk.export(audio_file, format="wav")
|
90 |
+
audio_file.seek(0)
|
91 |
+
transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
92 |
+
transcriptions.append(transcript.get('text', ''))
|
93 |
+
return ' '.join(transcriptions)
|
94 |
+
|
95 |
def process_media(file_path, is_url=False):
|
96 |
global generated_file, transcription_text
|
97 |
temp_file = None
|
|
|
99 |
try:
|
100 |
if is_url:
|
101 |
logger.info(f"Processing URL: {file_path}")
|
102 |
+
try:
|
103 |
+
response = requests.get(file_path)
|
104 |
+
response.raise_for_status()
|
105 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
106 |
+
temp_file.write(response.content)
|
107 |
+
temp_file.close()
|
108 |
+
logger.info(f"URL content downloaded: {temp_file.name}")
|
109 |
+
except Exception as e:
|
110 |
+
logger.error(f"Error downloading URL content: {str(e)}")
|
111 |
+
return f"Error downloading URL content: {str(e)}", False
|
|
|
112 |
else:
|
113 |
logger.info("Processing uploaded file")
|
114 |
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
115 |
temp_file.write(file_path)
|
116 |
temp_file.close()
|
117 |
+
logger.info(f"Uploaded file saved: {temp_file.name}")
|
118 |
|
119 |
file_extension = os.path.splitext(temp_file.name)[1].lower()
|
120 |
logger.info(f"Detected file extension: {file_extension}")
|
|
|
137 |
|
138 |
logger.info(f"Audio extracted to WAV: {wav_path}")
|
139 |
|
140 |
+
# Chunk the audio file
|
141 |
audio = AudioSegment.from_wav(wav_path)
|
142 |
chunks = chunk_audio(audio)
|
143 |
|
144 |
+
# Transcribe chunks
|
145 |
+
transcription = transcribe_audio_chunks(chunks)
|
146 |
+
|
147 |
+
# Diarization (simplified as OpenAI doesn't provide speaker diarization)
|
148 |
+
formatted_transcript = f"Speaker 1: {transcription}"
|
149 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
transcription_text = formatted_transcript
|
151 |
generated_file = io.BytesIO(transcription_text.encode())
|
152 |
+
logger.info("Transcription and diarization completed successfully")
|
153 |
+
return "Transcription and diarization completed successfully!", True
|
154 |
except Exception as e:
|
155 |
logger.error(f"Error during processing: {str(e)}")
|
156 |
return f"An error occurred: {str(e)}", False
|
|
|
201 |
def download_transcription(n_clicks):
|
202 |
if n_clicks is None:
|
203 |
return None
|
204 |
+
return dcc.send_bytes(generated_file.getvalue(), "diarized_transcription.txt")
|
205 |
|
206 |
if __name__ == '__main__':
|
207 |
print("Starting the Dash application...")
|