Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,6 @@ from dash import Dash, dcc, html, Input, Output, State, callback, callback_conte
|
|
9 |
import dash_bootstrap_components as dbc
|
10 |
from pydub import AudioSegment
|
11 |
import requests
|
12 |
-
import yt_dlp
|
13 |
import mimetypes
|
14 |
import urllib.parse
|
15 |
|
@@ -65,8 +64,8 @@ app.layout = dbc.Container([
|
|
65 |
multiple=False
|
66 |
),
|
67 |
html.Div(id='output-media-upload'),
|
68 |
-
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL
|
69 |
-
dbc.Button("Process
|
70 |
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
|
71 |
html.H4("Diarized Transcription Preview", className="mt-4"),
|
72 |
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
|
@@ -77,6 +76,12 @@ app.layout = dbc.Container([
|
|
77 |
])
|
78 |
], fluid=True)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def process_media(file_path, is_url=False):
|
81 |
global generated_file, transcription_text
|
82 |
temp_file = None
|
@@ -84,68 +89,64 @@ def process_media(file_path, is_url=False):
|
|
84 |
try:
|
85 |
if is_url:
|
86 |
logger.info(f"Processing URL: {file_path}")
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
wav_path = f"{info['id']}.wav"
|
99 |
-
logger.info(f"Audio downloaded: {wav_path}")
|
100 |
-
except Exception as e:
|
101 |
-
logger.error(f"Error downloading audio from URL: {str(e)}")
|
102 |
-
return f"Error downloading audio from URL: {str(e)}", False
|
103 |
else:
|
104 |
logger.info("Processing uploaded file")
|
105 |
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
106 |
temp_file.write(file_path)
|
107 |
temp_file.close()
|
108 |
-
logger.info(f"Uploaded file saved: {temp_file.name}")
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
logger.info(f"Audio extracted to WAV: {wav_path}")
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
audio_file.seek(0)
|
134 |
-
diarized_transcript = openai.Audio.transcribe("whisper-1", audio_file, response_format="verbose_json")
|
135 |
-
|
136 |
-
formatted_transcript = ""
|
137 |
-
if 'segments' in diarized_transcript:
|
138 |
-
for segment in diarized_transcript["segments"]:
|
139 |
-
speaker = segment.get('speaker', 'Unknown')
|
140 |
-
text = segment.get('text', '')
|
141 |
-
formatted_transcript += f"Speaker {speaker}: {text}\n\n"
|
142 |
-
else:
|
143 |
-
formatted_transcript = transcript.get('text', 'No transcription available.')
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
transcription_text = formatted_transcript
|
146 |
generated_file = io.BytesIO(transcription_text.encode())
|
147 |
-
logger.info("Transcription
|
148 |
-
return "Transcription
|
149 |
except Exception as e:
|
150 |
logger.error(f"Error during processing: {str(e)}")
|
151 |
return f"An error occurred: {str(e)}", False
|
@@ -154,7 +155,7 @@ def process_media(file_path, is_url=False):
|
|
154 |
os.unlink(temp_file.name)
|
155 |
if wav_path and os.path.exists(wav_path):
|
156 |
os.unlink(wav_path)
|
157 |
-
|
158 |
@app.callback(
|
159 |
[Output('output-media-upload', 'children'),
|
160 |
Output('transcription-status', 'children'),
|
@@ -196,7 +197,7 @@ def update_output(contents, n_clicks, filename, url):
|
|
196 |
def download_transcription(n_clicks):
|
197 |
if n_clicks is None:
|
198 |
return None
|
199 |
-
return dcc.send_bytes(generated_file.getvalue(), "
|
200 |
|
201 |
if __name__ == '__main__':
|
202 |
print("Starting the Dash application...")
|
|
|
9 |
import dash_bootstrap_components as dbc
|
10 |
from pydub import AudioSegment
|
11 |
import requests
|
|
|
12 |
import mimetypes
|
13 |
import urllib.parse
|
14 |
|
|
|
64 |
multiple=False
|
65 |
),
|
66 |
html.Div(id='output-media-upload'),
|
67 |
+
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL", className="mb-3"),
|
68 |
+
dbc.Button("Process Media", id="process-url-button", color="primary", className="mb-3"),
|
69 |
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
|
70 |
html.H4("Diarized Transcription Preview", className="mt-4"),
|
71 |
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
|
|
|
76 |
])
|
77 |
], fluid=True)
|
78 |
|
79 |
+
def chunk_audio(audio_segment, chunk_length_ms=60000):
|
80 |
+
chunks = []
|
81 |
+
for i in range(0, len(audio_segment), chunk_length_ms):
|
82 |
+
chunks.append(audio_segment[i:i+chunk_length_ms])
|
83 |
+
return chunks
|
84 |
+
|
85 |
def process_media(file_path, is_url=False):
|
86 |
global generated_file, transcription_text
|
87 |
temp_file = None
|
|
|
89 |
try:
|
90 |
if is_url:
|
91 |
logger.info(f"Processing URL: {file_path}")
|
92 |
+
response = requests.get(file_path)
|
93 |
+
content_type = response.headers.get('content-type', '')
|
94 |
+
if 'audio' in content_type:
|
95 |
+
suffix = '.mp3'
|
96 |
+
elif 'video' in content_type:
|
97 |
+
suffix = '.mp4'
|
98 |
+
else:
|
99 |
+
suffix = ''
|
100 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
101 |
+
temp_file.write(response.content)
|
102 |
+
temp_file.close()
|
|
|
|
|
|
|
|
|
|
|
103 |
else:
|
104 |
logger.info("Processing uploaded file")
|
105 |
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
106 |
temp_file.write(file_path)
|
107 |
temp_file.close()
|
|
|
108 |
|
109 |
+
file_extension = os.path.splitext(temp_file.name)[1].lower()
|
110 |
+
logger.info(f"Detected file extension: {file_extension}")
|
111 |
+
|
112 |
+
if file_extension in VIDEO_FORMATS:
|
113 |
+
logger.info("Processing video file")
|
114 |
+
video = VideoFileClip(temp_file.name)
|
115 |
+
audio = video.audio
|
116 |
+
wav_path = temp_file.name + ".wav"
|
117 |
+
audio.write_audiofile(wav_path)
|
118 |
+
video.close()
|
119 |
+
elif file_extension in AUDIO_FORMATS:
|
120 |
+
logger.info("Processing audio file")
|
121 |
+
audio = AudioSegment.from_file(temp_file.name, format=file_extension[1:])
|
122 |
+
wav_path = temp_file.name + ".wav"
|
123 |
+
audio.export(wav_path, format="wav")
|
124 |
+
else:
|
125 |
+
logger.error(f"Unsupported file format: {file_extension}")
|
126 |
+
return f"Unsupported file format: {file_extension}. Please upload a supported audio or video file.", False
|
127 |
|
128 |
logger.info(f"Audio extracted to WAV: {wav_path}")
|
129 |
|
130 |
+
audio = AudioSegment.from_wav(wav_path)
|
131 |
+
chunks = chunk_audio(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
full_transcript = ""
|
134 |
+
for i, chunk in enumerate(chunks):
|
135 |
+
logger.info(f"Processing chunk {i+1}/{len(chunks)}")
|
136 |
+
chunk_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
137 |
+
chunk.export(chunk_file.name, format="wav")
|
138 |
+
|
139 |
+
with open(chunk_file.name, "rb") as audio_file:
|
140 |
+
transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
141 |
+
full_transcript += transcript.get('text', '') + " "
|
142 |
+
|
143 |
+
os.unlink(chunk_file.name)
|
144 |
+
|
145 |
+
formatted_transcript = full_transcript.strip()
|
146 |
transcription_text = formatted_transcript
|
147 |
generated_file = io.BytesIO(transcription_text.encode())
|
148 |
+
logger.info("Transcription completed successfully")
|
149 |
+
return "Transcription completed successfully!", True
|
150 |
except Exception as e:
|
151 |
logger.error(f"Error during processing: {str(e)}")
|
152 |
return f"An error occurred: {str(e)}", False
|
|
|
155 |
os.unlink(temp_file.name)
|
156 |
if wav_path and os.path.exists(wav_path):
|
157 |
os.unlink(wav_path)
|
158 |
+
|
159 |
@app.callback(
|
160 |
[Output('output-media-upload', 'children'),
|
161 |
Output('transcription-status', 'children'),
|
|
|
197 |
def download_transcription(n_clicks):
|
198 |
if n_clicks is None:
|
199 |
return None
|
200 |
+
return dcc.send_bytes(generated_file.getvalue(), "transcription.txt")
|
201 |
|
202 |
if __name__ == '__main__':
|
203 |
print("Starting the Dash application...")
|