Update app.py
Browse files
app.py
CHANGED
@@ -79,36 +79,39 @@ def format_transcript(transcript):
|
|
79 |
|
80 |
def transcribe_audio(audio_file):
|
81 |
try:
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
# Load the audio file
|
86 |
audio_input, sr = librosa.load(audio_file, sr=16000)
|
87 |
|
88 |
# Convert to float32 numpy array
|
89 |
audio_input = audio_input.astype(np.float32)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
91 |
transcriptions = []
|
92 |
-
current_speaker = None
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
chunk = audio_input[start_sample:end_sample]
|
99 |
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
100 |
predicted_ids = model.generate(input_features)
|
101 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
102 |
-
|
103 |
-
|
104 |
-
if current_speaker is not None:
|
105 |
-
transcriptions.append("\n\n") # Add line break for new speaker
|
106 |
-
current_speaker = speaker
|
107 |
-
|
108 |
-
transcriptions.append(f"Speaker {speaker}: {transcription}")
|
109 |
|
|
|
110 |
full_transcription = " ".join(transcriptions)
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
return full_transcription
|
113 |
except Exception as e:
|
114 |
print(f"Error in transcribe_audio: {str(e)}")
|
|
|
79 |
|
80 |
def transcribe_audio(audio_file):
|
81 |
try:
|
82 |
+
# Load the entire audio file
|
83 |
+
print("Loading audio file...")
|
|
|
|
|
84 |
audio_input, sr = librosa.load(audio_file, sr=16000)
|
85 |
|
86 |
# Convert to float32 numpy array
|
87 |
audio_input = audio_input.astype(np.float32)
|
88 |
|
89 |
+
print(f"Audio duration: {len(audio_input) / sr:.2f} seconds")
|
90 |
+
|
91 |
+
# Process in chunks of 30 seconds with overlap
|
92 |
+
chunk_length = 30 * sr
|
93 |
+
overlap = 5 * sr # 5 seconds overlap
|
94 |
transcriptions = []
|
|
|
95 |
|
96 |
+
print("Starting transcription...")
|
97 |
+
for i in range(0, len(audio_input), chunk_length - overlap):
|
98 |
+
chunk = audio_input[i:i+chunk_length]
|
|
|
|
|
99 |
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
100 |
predicted_ids = model.generate(input_features)
|
101 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
102 |
+
transcriptions.extend(transcription)
|
103 |
+
print(f"Processed {i / sr:.2f} to {(i + chunk_length) / sr:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# Join all transcriptions
|
106 |
full_transcription = " ".join(transcriptions)
|
107 |
+
|
108 |
+
print(f"Transcription complete. Full transcription length: {len(full_transcription)} characters")
|
109 |
+
|
110 |
+
# Apply spelling correction and formatting
|
111 |
+
print("Applying spelling correction and formatting...")
|
112 |
+
full_transcription = correct_spelling(full_transcription)
|
113 |
+
full_transcription = format_transcript(full_transcription)
|
114 |
+
|
115 |
return full_transcription
|
116 |
except Exception as e:
|
117 |
print(f"Error in transcribe_audio: {str(e)}")
|