Update app.py
Browse files
app.py
CHANGED
@@ -69,33 +69,41 @@ def download_audio_from_url(url):
|
|
69 |
|
70 |
def transcribe_audio(audio_file):
|
71 |
try:
|
72 |
-
|
73 |
audio = AudioSegment.from_file(audio_file)
|
74 |
audio = audio.set_channels(1).set_frame_rate(16000)
|
75 |
audio_array = torch.tensor(audio.get_array_of_samples()).float()
|
76 |
|
77 |
-
|
78 |
-
|
79 |
input_features = whisper_processor(audio_array, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
80 |
|
81 |
# Create attention mask
|
82 |
attention_mask = torch.ones_like(input_features)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
if len(transcription[0]) < 10:
|
95 |
-
raise ValueError(f"Transcription too short: {transcription[0]}")
|
96 |
-
return transcription[0]
|
97 |
except Exception as e:
|
98 |
-
|
99 |
raise
|
100 |
|
101 |
def separate_speakers(transcription):
|
|
|
69 |
|
70 |
def transcribe_audio(audio_file):
|
71 |
try:
|
72 |
+
logger.info("Loading audio file...")
|
73 |
audio = AudioSegment.from_file(audio_file)
|
74 |
audio = audio.set_channels(1).set_frame_rate(16000)
|
75 |
audio_array = torch.tensor(audio.get_array_of_samples()).float()
|
76 |
|
77 |
+
logger.info(f"Audio duration: {len(audio) / 1000:.2f} seconds")
|
78 |
+
logger.info("Starting transcription...")
|
79 |
input_features = whisper_processor(audio_array, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
80 |
|
81 |
# Create attention mask
|
82 |
attention_mask = torch.ones_like(input_features)
|
83 |
|
84 |
+
max_retries = 3
|
85 |
+
for attempt in range(max_retries):
|
86 |
+
# Generate with specific parameters
|
87 |
+
predicted_ids = whisper_model.generate(
|
88 |
+
input_features,
|
89 |
+
attention_mask=attention_mask,
|
90 |
+
language='en',
|
91 |
+
task='translate',
|
92 |
+
temperature=0.7, # Adjust temperature for potentially better results
|
93 |
+
num_beams=5, # Increase beam search for potentially better results
|
94 |
+
max_length=448, # Increase max length to allow for longer transcriptions
|
95 |
+
)
|
96 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
97 |
+
|
98 |
+
logger.info(f"Transcription attempt {attempt + 1} complete. Length: {len(transcription[0])} characters")
|
99 |
+
if len(transcription[0]) >= 10:
|
100 |
+
return transcription[0]
|
101 |
+
else:
|
102 |
+
logger.warning(f"Transcription too short on attempt {attempt + 1}: {transcription[0]}")
|
103 |
|
104 |
+
raise ValueError(f"Failed to generate a valid transcription after {max_retries} attempts")
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
+
logger.error(f"Error in transcribe_audio: {str(e)}")
|
107 |
raise
|
108 |
|
109 |
def separate_speakers(transcription):
|