import gradio as gr import torchaudio import torchaudio.transforms as T from transformers import pipeline import requests from pydub import AudioSegment from pydub.silence import split_on_silence import io import os from bs4 import BeautifulSoup import re import numpy as np # Load the transcription model transcription_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") def download_audio_from_url(url): try: if "share" in url: print("Processing shareable link...") response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') video_tag = soup.find('video') if video_tag and 'src' in video_tag.attrs: video_url = video_tag['src'] print(f"Extracted video URL: {video_url}") else: raise ValueError("Direct video URL not found in the shareable link.") else: video_url = url print(f"Downloading video from URL: {video_url}") response = requests.get(video_url) audio_bytes = response.content print(f"Successfully downloaded {len(audio_bytes)} bytes of data") return audio_bytes except Exception as e: print(f"Error in download_audio_from_url: {str(e)}") raise def transcribe_audio(audio_bytes): audio = AudioSegment.from_file(io.BytesIO(audio_bytes)) audio.export("temp_audio.wav", format="wav") waveform, sample_rate = torchaudio.load("temp_audio.wav") os.remove("temp_audio.wav") # Convert torch.Tensor to numpy.ndarray waveform_np = waveform.numpy().squeeze() # Transcribe the audio result = transcription_pipeline(waveform_np, chunk_length_s=30) transcript = result['text'] # Split transcript into paragraphs based on silence chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40) paragraphs = [] current_paragraph = "" for chunk in chunks: chunk.export("temp_chunk.wav", format="wav") waveform_chunk, sample_rate_chunk = torchaudio.load("temp_chunk.wav") os.remove("temp_chunk.wav") # Convert torch.Tensor to numpy.ndarray waveform_chunk_np = waveform_chunk.numpy().squeeze() chunk_result = transcription_pipeline(waveform_chunk_np, chunk_length_s=30) chunk_transcript = chunk_result['text'] if chunk_transcript: if current_paragraph: current_paragraph += " " + chunk_transcript else: current_paragraph = chunk_transcript else: if current_paragraph: paragraphs.append(current_paragraph) current_paragraph = "" if current_paragraph: paragraphs.append(current_paragraph) formatted_transcript = "\n\n".join(paragraphs) return formatted_transcript def transcribe_video(url): try: print(f"Attempting to download audio from URL: {url}") audio_bytes = download_audio_from_url(url) print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data") print("Starting audio transcription...") transcript = transcribe_audio(audio_bytes) print("Transcription completed successfully") return transcript except Exception as e: error_message = f"An error occurred: {str(e)}" print(error_message) return error_message def download_transcript(transcript): return transcript, "transcript.txt" # Create the Gradio interface with gr.Blocks(title="Video Transcription") as demo: gr.Markdown("# Video Transcription") video_url = gr.Textbox(label="Video URL") transcribe_button = gr.Button("Transcribe") transcript_output = gr.Textbox(label="Transcript", lines=20) download_button = gr.Button("Download Transcript") download_link = gr.File(label="Download Transcript") transcribe_button.click(fn=transcribe_video, inputs=video_url, outputs=transcript_output) download_button.click(fn=download_transcript, inputs=transcript_output, outputs=[download_link, download_link]) demo.launch()