File size: 8,360 Bytes
74245b5 b8d465b 38f82cf b8d465b 97778aa 031a7f3 97778aa 851995d b8d465b 97778aa 031a7f3 97778aa 031a7f3 97778aa d982b19 b8d465b d982b19 3dcc3a1 d982b19 3dcc3a1 d982b19 b8d465b 97778aa 031a7f3 97778aa 1e7b36b 97778aa 72cdd21 b8d465b 97778aa b8d465b 97778aa b8d465b 031a7f3 b8d465b d982b19 b8d465b 97778aa b8d465b 97778aa b8d465b 031a7f3 d982b19 b8d465b 97778aa b8d465b d982b19 97778aa d982b19 97778aa 74245b5 a727789 b8d465b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import google.generativeai as genai
import numpy as np
import io
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import torchaudio
from torchaudio.functional import resample
import threading
import queue
# Set up logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model name
model_name = "canopylabs/orpheus-3b-0.1-ft"
def load_model(hf_token):
login(token=hf_token)
print("Loading Orpheus model...")
snapshot_download(
repo_id=model_name,
use_auth_token=hf_token,
allow_patterns=[
"config.json",
"*.safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.*"
]
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
return model, tokenizer
# Initialize as None, will be loaded when HF token is provided
model = None
tokenizer = None
def generate_podcast_script(api_key, content, duration, num_hosts):
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
if num_hosts == 1:
prompt = f"""
Create a podcast script for one person discussing the following content:
{content}
The podcast should last approximately {duration}. Include natural speech patterns,
humor, and occasional off-topic thoughts. Use occasional speech fillers like um, ah,
yes, I see, Ok now. Vary the emotional tone.
Format the script as a monologue without speaker labels.
Separate each paragraph with a blank line.
Do not use any special characters or markdown. Only include the monologue with proper punctuation.
Ensure the content flows naturally and stays relevant to the topic.
Limit the script length to match the requested duration of {duration}.
Use emotion tags naturally in generative AI speech, incorporate them sparingly at key moments to enhance the dialogue's emotional context.
Place tags like <laugh> for joy, <sigh> for frustration or relief, <chuckle> for mild amusement, <cough> or <sniffle> for discomfort, <groan> for displeasure, <yawn> for tiredness, and <gasp> for surprise.
For example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>. Oh well, at least I finished the project <chuckle>."
Remember, use tags judiciously to maintain a natural flow of conversation.
"""
else:
prompt = f"""
Create a podcast script for two people discussing the following content:
{content}
The podcast should last approximately {duration}. Include natural speech patterns,
humor, and occasional off-topic chit-chat. Use occasional speech fillers like um, ah,
yes, I see, Ok now. Vary the emotional tone.
Format the script as alternating lines of dialogue without speaker labels.
Separate each line with a blank line.
Do not use any special characters or markdown. Only include the alternating dialogue lines with proper punctuation.
Ensure the conversation flows naturally and stays relevant to the topic.
Limit the script length to match the requested duration of {duration}.
Use emotion tags naturally in generative AI speech, incorporate them sparingly at key moments to enhance the dialogue's emotional context.
Place tags like <laugh> for joy, <sigh> for frustration or relief, <chuckle> for mild amusement, <cough> or <sniffle> for discomfort, <groan> for displeasure, <yawn> for tiredness, and <gasp> for surprise.
For example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>. Oh well, at least I finished the project <chuckle>."
Remember, use tags judiciously to maintain a natural flow of conversation.
"""
response = model.generate_content(prompt)
clean_text = re.sub(r'[^a-zA-Z0-9\s.,?!]', '', response.text)
return clean_text
def text_to_speech(text, voice):
global model, tokenizer
inputs = tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=256)
audio = output.audio.cpu().numpy()
return audio
def process_audio_segment(line, voice, result_queue):
audio = text_to_speech(line, voice)
result_queue.put(audio)
def render_podcast(api_key, script, voice1, voice2, num_hosts):
lines = [line for line in script.split('\n') if line.strip()]
audio_segments = []
threads = []
result_queue = queue.Queue()
for i, line in enumerate(lines):
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
thread = threading.Thread(target=process_audio_segment, args=(line, voice, result_queue))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
while not result_queue.empty():
audio_segments.append(result_queue.get())
if not audio_segments:
logger.warning("No valid audio segments were generated.")
return (24000, np.zeros(24000, dtype=np.float32))
podcast_audio = np.concatenate(audio_segments)
podcast_audio = resample(torch.from_numpy(podcast_audio), 24000, 24000).numpy()
return (24000, podcast_audio)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# AI Podcast Generator")
hf_token_input = gr.Textbox(label="Enter your Hugging Face API Token", type="password")
load_model_btn = gr.Button("Load Orpheus Model")
model_status = gr.Markdown("Model not loaded")
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password")
with gr.Row():
content_input = gr.Textbox(label="Paste your content or upload a document")
document_upload = gr.File(label="Upload Document")
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration")
num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2)
with gr.Row():
voice1_select = gr.Dropdown(label="Select Voice 1", choices=["Voice 1", "Voice 2", "Voice 3"], value="Voice 1")
with gr.Row():
voice2_select = gr.Dropdown(label="Select Voice 2", choices=["Voice 1", "Voice 2", "Voice 3"], value="Voice 2")
generate_btn = gr.Button("Generate Script")
script_output = gr.Textbox(label="Generated Script", lines=10)
render_btn = gr.Button("Render Podcast")
audio_output = gr.Audio(label="Generated Podcast")
def load_model_wrapper(hf_token):
global model, tokenizer
model, tokenizer = load_model(hf_token)
return "Model loaded successfully"
load_model_btn.click(load_model_wrapper, inputs=[hf_token_input], outputs=[model_status])
def generate_script_wrapper(api_key, content, duration, num_hosts):
return generate_podcast_script(api_key, content, duration, num_hosts)
def render_podcast_wrapper(api_key, script, voice1, voice2, num_hosts):
return render_podcast(api_key, script, voice1, voice2, num_hosts)
generate_btn.click(generate_script_wrapper, inputs=[api_key_input, content_input, duration, num_hosts], outputs=script_output)
render_btn.click(render_podcast_wrapper, inputs=[api_key_input, script_output, voice1_select, voice2_select, num_hosts], outputs=audio_output)
def update_second_voice_visibility(num_hosts):
return gr.update(visible=num_hosts == 2)
num_hosts.change(update_second_voice_visibility, inputs=[num_hosts], outputs=[voice2_select])
if __name__ == "__main__":
demo.launch() |