|
import gradio as gr |
|
import google.generativeai as genai |
|
import numpy as np |
|
import re |
|
import torch |
|
import torchaudio |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from huggingface_hub import snapshot_download, login |
|
import logging |
|
import os |
|
import spaces |
|
import warnings |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
warnings.filterwarnings("ignore", category=RuntimeWarning) |
|
|
|
def get_device(): |
|
if torch.cuda.is_available(): |
|
return torch.device("cuda") |
|
return torch.device("cpu") |
|
|
|
device = get_device() |
|
logger.info(f"Using device: {device}") |
|
|
|
model = None |
|
tokenizer = None |
|
|
|
@spaces.GPU() |
|
def load_model(): |
|
global model, tokenizer |
|
|
|
logger.info("Loading Orpheus model...") |
|
model_name = "canopylabs/orpheus-3b-0.1-ft" |
|
|
|
hf_token = os.environ.get("HUGGINGFACE_TOKEN") |
|
if not hf_token: |
|
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") |
|
|
|
try: |
|
login(token=hf_token) |
|
|
|
snapshot_download( |
|
repo_id=model_name, |
|
use_auth_token=hf_token, |
|
allow_patterns=[ |
|
"config.json", |
|
"*.safetensors", |
|
"model.safetensors.index.json", |
|
], |
|
ignore_patterns=[ |
|
"optimizer.pt", |
|
"pytorch_model.bin", |
|
"training_args.bin", |
|
"scheduler.pt", |
|
"tokenizer.json", |
|
"tokenizer_config.json", |
|
"special_tokens_map.json", |
|
"vocab.json", |
|
"merges.txt", |
|
"tokenizer.*" |
|
] |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32 if device.type == 'cpu' else torch.bfloat16) |
|
model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
logger.info(f"Orpheus model and tokenizer loaded to {device}") |
|
except Exception as e: |
|
logger.error(f"Error loading model: {str(e)}") |
|
raise |
|
|
|
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts): |
|
try: |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') |
|
|
|
combined_content = content or "" |
|
if uploaded_file: |
|
file_content = uploaded_file.read().decode('utf-8') |
|
combined_content += "\n" + file_content if combined_content else file_content |
|
|
|
prompt = f""" |
|
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing: |
|
{combined_content} |
|
|
|
Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts. |
|
Use speech fillers like um, ah. Vary emotional tone. |
|
|
|
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels. |
|
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines. |
|
|
|
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>. |
|
|
|
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>." |
|
|
|
Ensure content flows naturally and stays on topic. Match the script length to {duration}. |
|
""" |
|
|
|
response = model.generate_content(prompt) |
|
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text) |
|
except Exception as e: |
|
logger.error(f"Error generating podcast script: {str(e)}") |
|
raise |
|
|
|
@spaces.GPU() |
|
def text_to_speech(text, voice): |
|
global model, tokenizer |
|
try: |
|
if model is None or tokenizer is None: |
|
load_model() |
|
|
|
|
|
clean_text = re.sub(r'<[^>]+>', '', text) |
|
|
|
inputs = tokenizer(clean_text, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
output = model.generate(**inputs, max_new_tokens=256) |
|
|
|
|
|
mel = output[0].cpu() |
|
|
|
|
|
mel = (mel - mel.min()) / (mel.max() - mel.min()) |
|
|
|
|
|
griffin_lim = torchaudio.transforms.GriffinLim(n_fft=2048, n_iter=10) |
|
audio = griffin_lim(mel.unsqueeze(0)) |
|
|
|
|
|
audio_np = audio.squeeze().numpy() |
|
audio_np = np.clip(audio_np, -1, 1) |
|
|
|
return (24000, audio_np.astype(np.float32)) |
|
except Exception as e: |
|
logger.error(f"Error in text_to_speech: {str(e)}") |
|
raise |
|
|
|
@spaces.GPU() |
|
def render_podcast(api_key, script, voice1, voice2, num_hosts): |
|
try: |
|
lines = [line for line in script.split('\n') if line.strip()] |
|
audio_segments = [] |
|
|
|
for i, line in enumerate(lines): |
|
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2 |
|
try: |
|
_, audio = text_to_speech(line, voice) |
|
audio_segments.append(audio) |
|
except Exception as e: |
|
logger.error(f"Error processing audio segment: {str(e)}") |
|
|
|
if not audio_segments: |
|
logger.warning("No valid audio segments were generated.") |
|
return (24000, np.zeros(24000, dtype=np.float32)) |
|
|
|
podcast_audio = np.concatenate(audio_segments) |
|
|
|
|
|
podcast_audio = np.clip(podcast_audio, -1, 1) |
|
podcast_audio = (podcast_audio * 32767).astype(np.int16) |
|
|
|
return (24000, podcast_audio) |
|
except Exception as e: |
|
logger.error(f"Error rendering podcast: {str(e)}") |
|
raise |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# AI Podcast Generator") |
|
|
|
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password") |
|
|
|
with gr.Row(): |
|
content_input = gr.Textbox(label="Paste your content (optional)") |
|
document_upload = gr.File(label="Upload Document (optional)") |
|
|
|
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration") |
|
num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2) |
|
|
|
voice_options = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"] |
|
voice1_select = gr.Dropdown(label="Select Voice 1", choices=voice_options, value="tara") |
|
voice2_select = gr.Dropdown(label="Select Voice 2", choices=voice_options, value="leo") |
|
|
|
generate_btn = gr.Button("Generate Script") |
|
script_output = gr.Textbox(label="Generated Script", lines=10) |
|
|
|
render_btn = gr.Button("Render Podcast") |
|
audio_output = gr.Audio(label="Generated Podcast") |
|
|
|
generate_btn.click(generate_podcast_script, |
|
inputs=[api_key_input, content_input, document_upload, duration, num_hosts], |
|
outputs=script_output) |
|
|
|
render_btn.click(render_podcast, |
|
inputs=[api_key_input, script_output, voice1_select, voice2_select, num_hosts], |
|
outputs=audio_output) |
|
|
|
num_hosts.change(lambda x: gr.update(visible=x == 2), |
|
inputs=[num_hosts], |
|
outputs=[voice2_select]) |
|
|
|
if __name__ == "__main__": |
|
try: |
|
load_model() |
|
demo.launch() |
|
except Exception as e: |
|
logger.error(f"Error launching the application: {str(e)}") |