|
|
|
|
|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
import google.generativeai as genai |
|
from e2_tts_pytorch import E2TTS, DurationPredictor |
|
import numpy as np |
|
import os |
|
import requests |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
def generate_podcast_script(api_key, content, duration): |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') |
|
|
|
prompt = f""" |
|
Create a podcast script for two people discussing the following content: |
|
{content} |
|
|
|
The podcast should last approximately {duration}. Include natural speech patterns, |
|
humor, and occasional off-topic chit-chat. Use speech fillers like "um", "ah", |
|
"yes", "I see", "Ok now". Vary the emotional tone (e.g., regular, happy, sad, surprised) |
|
and indicate these in [square brackets]. Format the script as follows: |
|
|
|
Host 1: [emotion] Dialog |
|
Host 2: [emotion] Dialog |
|
|
|
Ensure the conversation flows naturally and stays relevant to the topic. |
|
""" |
|
response = model.generate_content(prompt) |
|
return response.text |
|
|
|
def text_to_speech(text, speaker_id): |
|
|
|
|
|
mel = torch.randn(1, 80, 100) |
|
|
|
|
|
with torch.no_grad(): |
|
sampled = e2tts.sample(mel[:, :5], text=[text]) |
|
|
|
return sampled.cpu().numpy().squeeze() |
|
|
|
def create_podcast(api_key, content, duration, voice1, voice2): |
|
script = generate_podcast_script(api_key, content, duration) |
|
return render_podcast(api_key, script, voice1, voice2) |
|
|
|
def gradio_interface(api_key, content, duration, voice1, voice2): |
|
script = generate_podcast_script(api_key, content, duration) |
|
return script |
|
|
|
def render_podcast(api_key, script, voice1, voice2): |
|
lines = script.split('\n') |
|
audio_segments = [] |
|
|
|
for line in lines: |
|
if line.startswith("Host 1:"): |
|
audio = text_to_speech(line[7:], speaker_id=0) |
|
audio_segments.append(audio) |
|
elif line.startswith("Host 2:"): |
|
audio = text_to_speech(line[7:], speaker_id=1) |
|
audio_segments.append(audio) |
|
|
|
if not audio_segments: |
|
return (22050, np.zeros(22050)) |
|
|
|
|
|
podcast_audio = np.concatenate(audio_segments) |
|
return (22050, podcast_audio) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# AI Podcast Generator") |
|
|
|
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password") |
|
|
|
with gr.Row(): |
|
content_input = gr.Textbox(label="Paste your content or upload a document") |
|
document_upload = gr.File(label="Upload Document") |
|
|
|
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration") |
|
|
|
with gr.Row(): |
|
voice1_upload = gr.Audio(label="Upload Voice 1", type="filepath") |
|
voice2_upload = gr.Audio(label="Upload Voice 2", type="filepath") |
|
|
|
generate_btn = gr.Button("Generate Script") |
|
script_output = gr.Textbox(label="Generated Script", lines=10) |
|
|
|
render_btn = gr.Button("Render Podcast") |
|
audio_output = gr.Audio(label="Generated Podcast") |
|
|
|
generate_btn.click(gradio_interface, inputs=[api_key_input, content_input, duration, voice1_upload, voice2_upload], outputs=script_output) |
|
render_btn.click(render_podcast, inputs=[api_key_input, script_output, voice1_upload, voice2_upload], outputs=audio_output) |
|
|
|
demo.launch() |