|
|
|
|
|
import gradio as gr |
|
import torch |
|
import torchaudio |
|
import google.generativeai as genai |
|
from e2_tts_pytorch import E2TTS, DurationPredictor |
|
import numpy as np |
|
import os |
|
import requests |
|
from tqdm import tqdm |
|
|
|
|
|
genai.configure(api_key='YOUR_GEMINI_API_KEY') |
|
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') |
|
|
|
|
|
def download_model(url, filename): |
|
response = requests.get(url, stream=True) |
|
total_size = int(response.headers.get('content-length', 0)) |
|
block_size = 1024 |
|
progress_bar = tqdm(total=total_size, unit='iB', unit_scale=True) |
|
|
|
os.makedirs(os.path.dirname(filename), exist_ok=True) |
|
with open(filename, 'wb') as file: |
|
for data in response.iter_content(block_size): |
|
size = file.write(data) |
|
progress_bar.update(size) |
|
progress_bar.close() |
|
|
|
|
|
model_path = "ckpts/E2TTS_Base/model_1200000.pt" |
|
if not os.path.exists(model_path): |
|
print("Downloading model file...") |
|
model_url = "https://huggingface.co/SWivid/E2-TTS/resolve/main/E2TTS_Base/model_1200000.pt" |
|
download_model(model_url, model_path) |
|
print("Model file downloaded successfully.") |
|
|
|
|
|
duration_predictor = DurationPredictor( |
|
transformer=dict( |
|
dim=512, |
|
depth=8, |
|
) |
|
) |
|
|
|
e2tts = E2TTS( |
|
duration_predictor=duration_predictor, |
|
transformer=dict( |
|
dim=512, |
|
depth=8 |
|
), |
|
) |
|
|
|
|
|
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) |
|
if 'model_state_dict' in checkpoint: |
|
state_dict = checkpoint['model_state_dict'] |
|
elif 'ema_model_state_dict' in checkpoint: |
|
state_dict = checkpoint['ema_model_state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
|
|
|
|
model_dict = e2tts.state_dict() |
|
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_dict} |
|
e2tts.load_state_dict(filtered_state_dict, strict=False) |
|
e2tts.eval() |
|
|
|
def generate_podcast_script(content, duration): |
|
prompt = f""" |
|
Create a podcast script for two people discussing the following content: |
|
{content} |
|
|
|
The podcast should last approximately {duration}. Include natural speech patterns, |
|
humor, and occasional off-topic chit-chat. Use speech fillers like "um", "ah", |
|
"yes", "I see", "Ok now". Vary the emotional tone (e.g., regular, happy, sad, surprised) |
|
and indicate these in [square brackets]. Format the script as follows: |
|
|
|
Host 1: [emotion] Dialog |
|
Host 2: [emotion] Dialog |
|
|
|
Ensure the conversation flows naturally and stays relevant to the topic. |
|
""" |
|
response = model.generate_content(prompt) |
|
return response.text |
|
|
|
def text_to_speech(text, speaker_id): |
|
|
|
|
|
mel = torch.randn(1, 80, 100) |
|
|
|
|
|
with torch.no_grad(): |
|
sampled = e2tts.sample(mel[:, :5], text=[text]) |
|
|
|
return sampled.cpu().numpy() |
|
|
|
def create_podcast(content, duration, voice1, voice2): |
|
script = generate_podcast_script(content, duration) |
|
lines = script.split('\n') |
|
audio_segments = [] |
|
|
|
for line in lines: |
|
if line.startswith("Host 1:"): |
|
audio = text_to_speech(line[7:], speaker_id=0) |
|
audio_segments.append(audio) |
|
elif line.startswith("Host 2:"): |
|
audio = text_to_speech(line[7:], speaker_id=1) |
|
audio_segments.append(audio) |
|
|
|
|
|
podcast_audio = np.concatenate(audio_segments) |
|
return (22050, podcast_audio) |
|
|
|
def gradio_interface(content, duration, voice1, voice2): |
|
script = generate_podcast_script(content, duration) |
|
return script |
|
|
|
def render_podcast(script, voice1, voice2): |
|
lines = script.split('\n') |
|
audio_segments = [] |
|
|
|
for line in lines: |
|
if line.startswith("Host 1:"): |
|
audio = text_to_speech(line[7:], speaker_id=0) |
|
audio_segments.append(audio) |
|
elif line.startswith("Host 2:"): |
|
audio = text_to_speech(line[7:], speaker_id=1) |
|
audio_segments.append(audio) |
|
|
|
podcast_audio = np.concatenate(audio_segments) |
|
return (22050, podcast_audio) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# AI Podcast Generator") |
|
|
|
with gr.Row(): |
|
content_input = gr.Textbox(label="Paste your content or upload a document") |
|
document_upload = gr.File(label="Upload Document") |
|
|
|
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration") |
|
|
|
with gr.Row(): |
|
voice1_upload = gr.Audio(label="Upload Voice 1", type="filepath") |
|
voice2_upload = gr.Audio(label="Upload Voice 2", type="filepath") |
|
|
|
generate_btn = gr.Button("Generate Script") |
|
script_output = gr.Textbox(label="Generated Script", lines=10) |
|
|
|
render_btn = gr.Button("Render Podcast") |
|
audio_output = gr.Audio(label="Generated Podcast") |
|
|
|
generate_btn.click(gradio_interface, inputs=[content_input, duration, voice1_upload, voice2_upload], outputs=script_output) |
|
render_btn.click(render_podcast, inputs=[script_output, voice1_upload, voice2_upload], outputs=audio_output) |
|
|
|
demo.launch() |