Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
import google.generativeai as genai
|
3 |
-
import numpy as np
|
4 |
-
import re
|
5 |
import torch
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from huggingface_hub import snapshot_download, login
|
@@ -10,9 +7,7 @@ import os
|
|
10 |
import spaces
|
11 |
import warnings
|
12 |
from snac import SNAC
|
13 |
-
|
14 |
-
|
15 |
-
load_dotenv()
|
16 |
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
18 |
logger = logging.getLogger(__name__)
|
@@ -27,6 +22,8 @@ model = None
|
|
27 |
tokenizer = None
|
28 |
snac_model = None
|
29 |
|
|
|
|
|
30 |
@spaces.GPU()
|
31 |
def load_model():
|
32 |
global model, tokenizer, snac_model
|
@@ -59,40 +56,6 @@ def load_model():
|
|
59 |
logger.error(f"Error loading model: {str(e)}")
|
60 |
raise
|
61 |
|
62 |
-
@spaces.GPU()
|
63 |
-
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
|
64 |
-
try:
|
65 |
-
genai.configure(api_key=api_key)
|
66 |
-
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
|
67 |
-
|
68 |
-
combined_content = content or ""
|
69 |
-
if uploaded_file:
|
70 |
-
file_content = uploaded_file.read().decode('utf-8')
|
71 |
-
combined_content += "\n" + file_content if combined_content else file_content
|
72 |
-
|
73 |
-
prompt = f"""
|
74 |
-
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
|
75 |
-
{combined_content}
|
76 |
-
|
77 |
-
Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
|
78 |
-
Use speech fillers like um, ah. Vary emotional tone.
|
79 |
-
|
80 |
-
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
|
81 |
-
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
|
82 |
-
|
83 |
-
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
|
84 |
-
|
85 |
-
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
|
86 |
-
|
87 |
-
Ensure content flows naturally and stays on topic. Match the script length to {duration}.
|
88 |
-
"""
|
89 |
-
|
90 |
-
response = model.generate_content(prompt)
|
91 |
-
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
|
92 |
-
except Exception as e:
|
93 |
-
logger.error(f"Error generating podcast script: {str(e)}")
|
94 |
-
raise
|
95 |
-
|
96 |
def process_prompt(prompt, voice, tokenizer, device):
|
97 |
prompt = f"{voice}: {prompt}"
|
98 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
@@ -155,17 +118,15 @@ def redistribute_codes(code_list, snac_model):
|
|
155 |
return audio_hat.detach().squeeze().cpu().numpy()
|
156 |
|
157 |
@spaces.GPU()
|
158 |
-
def
|
159 |
-
global model, tokenizer, snac_model
|
160 |
-
if model is None or tokenizer is None or snac_model is None:
|
161 |
-
load_model()
|
162 |
-
|
163 |
if not text.strip():
|
164 |
return None
|
165 |
|
166 |
try:
|
|
|
167 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
168 |
|
|
|
169 |
with torch.no_grad():
|
170 |
generated_ids = model.generate(
|
171 |
input_ids=input_ids,
|
@@ -179,76 +140,75 @@ def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=
|
|
179 |
eos_token_id=128258,
|
180 |
)
|
181 |
|
|
|
182 |
code_list = parse_output(generated_ids)
|
|
|
|
|
183 |
audio_samples = redistribute_codes(code_list, snac_model)
|
184 |
|
185 |
return (24000, audio_samples)
|
186 |
except Exception as e:
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
@spaces.GPU()
|
191 |
-
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
192 |
-
try:
|
193 |
-
lines = [line for line in script.split('\n') if line.strip()]
|
194 |
-
audio_segments = []
|
195 |
-
|
196 |
-
for i, line in enumerate(lines):
|
197 |
-
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
|
198 |
-
try:
|
199 |
-
result = text_to_speech(line, voice)
|
200 |
-
if result is not None:
|
201 |
-
sample_rate, audio = result
|
202 |
-
audio_segments.append(audio)
|
203 |
-
except Exception as e:
|
204 |
-
logger.error(f"Error processing audio segment: {str(e)}")
|
205 |
-
|
206 |
-
if not audio_segments:
|
207 |
-
logger.warning("No valid audio segments were generated.")
|
208 |
-
return (24000, np.zeros(24000, dtype=np.float32))
|
209 |
-
|
210 |
-
podcast_audio = np.concatenate(audio_segments)
|
211 |
-
podcast_audio = np.clip(podcast_audio, -1, 1)
|
212 |
-
podcast_audio = (podcast_audio * 32767).astype(np.int16)
|
213 |
-
|
214 |
-
return (24000, podcast_audio)
|
215 |
-
except Exception as e:
|
216 |
-
logger.error(f"Error rendering podcast: {str(e)}")
|
217 |
-
raise
|
218 |
|
219 |
-
with gr.Blocks() as demo:
|
220 |
-
gr.Markdown("
|
|
|
|
|
221 |
|
222 |
-
|
|
|
|
|
|
|
223 |
|
224 |
with gr.Row():
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
inputs=[api_key_input, script_output, voice1_select, voice2_select, num_hosts],
|
247 |
-
outputs=audio_output)
|
248 |
-
|
249 |
-
num_hosts.change(lambda x: gr.update(visible=x == 2),
|
250 |
-
inputs=[num_hosts],
|
251 |
-
outputs=[voice2_select])
|
252 |
|
253 |
if __name__ == "__main__":
|
254 |
try:
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from huggingface_hub import snapshot_download, login
|
|
|
7 |
import spaces
|
8 |
import warnings
|
9 |
from snac import SNAC
|
10 |
+
import numpy as np
|
|
|
|
|
11 |
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
13 |
logger = logging.getLogger(__name__)
|
|
|
22 |
tokenizer = None
|
23 |
snac_model = None
|
24 |
|
25 |
+
EMOTIVE_TAGS = ["<laugh>", "<sigh>", "<gasp>", "<cry>", "<yawn>"]
|
26 |
+
|
27 |
@spaces.GPU()
|
28 |
def load_model():
|
29 |
global model, tokenizer, snac_model
|
|
|
56 |
logger.error(f"Error loading model: {str(e)}")
|
57 |
raise
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def process_prompt(prompt, voice, tokenizer, device):
|
60 |
prompt = f"{voice}: {prompt}"
|
61 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
118 |
return audio_hat.detach().squeeze().cpu().numpy()
|
119 |
|
120 |
@spaces.GPU()
|
121 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
122 |
if not text.strip():
|
123 |
return None
|
124 |
|
125 |
try:
|
126 |
+
progress(0.1, "Processing text...")
|
127 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
128 |
|
129 |
+
progress(0.3, "Generating speech tokens...")
|
130 |
with torch.no_grad():
|
131 |
generated_ids = model.generate(
|
132 |
input_ids=input_ids,
|
|
|
140 |
eos_token_id=128258,
|
141 |
)
|
142 |
|
143 |
+
progress(0.6, "Processing speech tokens...")
|
144 |
code_list = parse_output(generated_ids)
|
145 |
+
|
146 |
+
progress(0.8, "Converting to audio...")
|
147 |
audio_samples = redistribute_codes(code_list, snac_model)
|
148 |
|
149 |
return (24000, audio_samples)
|
150 |
except Exception as e:
|
151 |
+
print(f"Error generating speech: {e}")
|
152 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
155 |
+
gr.Markdown(f"""
|
156 |
+
# 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
|
157 |
+
Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
|
158 |
|
159 |
+
## Tips for better prompts:
|
160 |
+
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
|
161 |
+
- Longer text prompts generally work better than very short phrases
|
162 |
+
""")
|
163 |
|
164 |
with gr.Row():
|
165 |
+
with gr.Column():
|
166 |
+
text_input = gr.Textbox(
|
167 |
+
label="Text Input",
|
168 |
+
placeholder="Enter the text you want to convert to speech...",
|
169 |
+
lines=8
|
170 |
+
)
|
171 |
+
voice_select = gr.Dropdown(
|
172 |
+
choices=["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"],
|
173 |
+
value="tara",
|
174 |
+
label="Voice"
|
175 |
+
)
|
176 |
+
with gr.Accordion("Advanced Options", open=False):
|
177 |
+
temperature = gr.Slider(
|
178 |
+
minimum=0.1, maximum=1.0, value=0.6, step=0.1,
|
179 |
+
label="Temperature",
|
180 |
+
info="Higher values increase randomness in the output"
|
181 |
+
)
|
182 |
+
top_p = gr.Slider(
|
183 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
184 |
+
label="Top-p",
|
185 |
+
info="Lower values increase determinism in the output"
|
186 |
+
)
|
187 |
+
repetition_penalty = gr.Slider(
|
188 |
+
minimum=1.0, maximum=2.0, value=1.1, step=0.1,
|
189 |
+
label="Repetition Penalty",
|
190 |
+
info="Higher values discourage repetitive patterns"
|
191 |
+
)
|
192 |
+
max_new_tokens = gr.Slider(
|
193 |
+
minimum=100, maximum=2000, value=1200, step=100,
|
194 |
+
label="Max Length",
|
195 |
+
info="Maximum length of generated audio (in tokens)"
|
196 |
+
)
|
197 |
+
|
198 |
+
with gr.Row():
|
199 |
+
submit_btn = gr.Button("Generate Speech", variant="primary")
|
200 |
+
clear_btn = gr.Button("Clear")
|
201 |
+
|
202 |
+
with gr.Column():
|
203 |
+
audio_output = gr.Audio(label="Generated Speech")
|
204 |
|
205 |
+
submit_btn.click(
|
206 |
+
generate_speech,
|
207 |
+
inputs=[text_input, voice_select, temperature, top_p, repetition_penalty, max_new_tokens],
|
208 |
+
outputs=audio_output
|
209 |
+
)
|
210 |
|
211 |
+
clear_btn.click(lambda: "", inputs=None, outputs=text_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
if __name__ == "__main__":
|
214 |
try:
|