Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,8 @@ import logging
|
|
9 |
import os
|
10 |
import spaces
|
11 |
|
12 |
-
logging
|
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
def get_device():
|
@@ -18,7 +19,7 @@ def get_device():
|
|
18 |
return torch.device("cpu")
|
19 |
|
20 |
device = get_device()
|
21 |
-
|
22 |
|
23 |
model = None
|
24 |
tokenizer = None
|
@@ -27,107 +28,132 @@ tokenizer = None
|
|
27 |
def load_model():
|
28 |
global model, tokenizer
|
29 |
|
30 |
-
|
31 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
32 |
|
33 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
34 |
if not hf_token:
|
35 |
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
@spaces.GPU()
|
91 |
def text_to_speech(text, voice):
|
92 |
global model, tokenizer
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
def mel_to_audio(mel):
|
104 |
return np.zeros(24000, dtype=np.float32) # Placeholder: 1 second of silence
|
105 |
|
106 |
@spaces.GPU()
|
107 |
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
with gr.Blocks() as demo:
|
127 |
gr.Markdown("# AI Podcast Generator")
|
128 |
|
129 |
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password")
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration")
|
132 |
num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2)
|
133 |
|
@@ -142,7 +168,7 @@ with gr.Blocks() as demo:
|
|
142 |
audio_output = gr.Audio(label="Generated Podcast")
|
143 |
|
144 |
generate_btn.click(generate_podcast_script,
|
145 |
-
inputs=[api_key_input, content_input, duration, num_hosts],
|
146 |
outputs=script_output)
|
147 |
|
148 |
render_btn.click(render_podcast,
|
@@ -154,5 +180,8 @@ with gr.Blocks() as demo:
|
|
154 |
outputs=[voice2_select])
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
9 |
import os
|
10 |
import spaces
|
11 |
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
def get_device():
|
|
|
19 |
return torch.device("cpu")
|
20 |
|
21 |
device = get_device()
|
22 |
+
logger.info(f"Using device: {device}")
|
23 |
|
24 |
model = None
|
25 |
tokenizer = None
|
|
|
28 |
def load_model():
|
29 |
global model, tokenizer
|
30 |
|
31 |
+
logger.info("Loading Orpheus model...")
|
32 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
33 |
|
34 |
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
35 |
if not hf_token:
|
36 |
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
37 |
|
38 |
+
try:
|
39 |
+
login(token=hf_token)
|
40 |
+
|
41 |
+
snapshot_download(
|
42 |
+
repo_id=model_name,
|
43 |
+
use_auth_token=hf_token,
|
44 |
+
allow_patterns=[
|
45 |
+
"config.json",
|
46 |
+
"*.safetensors",
|
47 |
+
"model.safetensors.index.json",
|
48 |
+
],
|
49 |
+
ignore_patterns=[
|
50 |
+
"optimizer.pt",
|
51 |
+
"pytorch_model.bin",
|
52 |
+
"training_args.bin",
|
53 |
+
"scheduler.pt",
|
54 |
+
"tokenizer.json",
|
55 |
+
"tokenizer_config.json",
|
56 |
+
"special_tokens_map.json",
|
57 |
+
"vocab.json",
|
58 |
+
"merges.txt",
|
59 |
+
"tokenizer.*"
|
60 |
+
]
|
61 |
+
)
|
62 |
+
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32 if device.type == 'cpu' else torch.bfloat16)
|
64 |
+
model.to(device)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
66 |
+
logger.info(f"Orpheus model and tokenizer loaded to {device}")
|
67 |
+
except Exception as e:
|
68 |
+
logger.error(f"Error loading model: {str(e)}")
|
69 |
+
raise
|
70 |
+
|
71 |
+
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
|
72 |
+
try:
|
73 |
+
genai.configure(api_key=api_key)
|
74 |
+
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
|
75 |
+
|
76 |
+
combined_content = content or ""
|
77 |
+
if uploaded_file:
|
78 |
+
file_content = uploaded_file.read().decode('utf-8')
|
79 |
+
combined_content += "\n" + file_content if combined_content else file_content
|
80 |
+
|
81 |
+
prompt = f"""
|
82 |
+
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
|
83 |
+
{combined_content}
|
84 |
+
|
85 |
+
Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
|
86 |
+
Use speech fillers like um, ah. Vary emotional tone.
|
87 |
+
|
88 |
+
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
|
89 |
+
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
|
90 |
+
|
91 |
+
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
|
92 |
+
|
93 |
+
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
|
94 |
+
|
95 |
+
Ensure content flows naturally and stays on topic. Match the script length to {duration}.
|
96 |
+
"""
|
97 |
+
|
98 |
+
response = model.generate_content(prompt)
|
99 |
+
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Error generating podcast script: {str(e)}")
|
102 |
+
raise
|
103 |
|
104 |
@spaces.GPU()
|
105 |
def text_to_speech(text, voice):
|
106 |
global model, tokenizer
|
107 |
+
try:
|
108 |
+
if model is None or tokenizer is None:
|
109 |
+
load_model()
|
110 |
+
|
111 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
112 |
+
with torch.no_grad():
|
113 |
+
output = model.generate(**inputs, max_new_tokens=256)
|
114 |
+
mel = output[0].cpu().numpy()
|
115 |
+
audio = mel_to_audio(mel)
|
116 |
+
return audio
|
117 |
+
except Exception as e:
|
118 |
+
logger.error(f"Error in text_to_speech: {str(e)}")
|
119 |
+
raise
|
120 |
|
121 |
def mel_to_audio(mel):
|
122 |
return np.zeros(24000, dtype=np.float32) # Placeholder: 1 second of silence
|
123 |
|
124 |
@spaces.GPU()
|
125 |
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
126 |
+
try:
|
127 |
+
lines = [line for line in script.split('\n') if line.strip()]
|
128 |
+
audio_segments = []
|
129 |
+
|
130 |
+
for i, line in enumerate(lines):
|
131 |
+
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
|
132 |
+
try:
|
133 |
+
audio = text_to_speech(line, voice)
|
134 |
+
audio_segments.append(audio)
|
135 |
+
except Exception as e:
|
136 |
+
logger.error(f"Error processing audio segment: {str(e)}")
|
137 |
+
|
138 |
+
if not audio_segments:
|
139 |
+
logger.warning("No valid audio segments were generated.")
|
140 |
+
return (24000, np.zeros(24000, dtype=np.float32))
|
141 |
+
|
142 |
+
podcast_audio = np.concatenate(audio_segments)
|
143 |
+
return (24000, podcast_audio)
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Error rendering podcast: {str(e)}")
|
146 |
+
raise
|
147 |
|
148 |
with gr.Blocks() as demo:
|
149 |
gr.Markdown("# AI Podcast Generator")
|
150 |
|
151 |
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password")
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
content_input = gr.Textbox(label="Paste your content (optional)")
|
155 |
+
document_upload = gr.File(label="Upload Document (optional)")
|
156 |
+
|
157 |
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration")
|
158 |
num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2)
|
159 |
|
|
|
168 |
audio_output = gr.Audio(label="Generated Podcast")
|
169 |
|
170 |
generate_btn.click(generate_podcast_script,
|
171 |
+
inputs=[api_key_input, content_input, document_upload, duration, num_hosts],
|
172 |
outputs=script_output)
|
173 |
|
174 |
render_btn.click(render_podcast,
|
|
|
180 |
outputs=[voice2_select])
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
+
try:
|
184 |
+
load_model()
|
185 |
+
demo.launch()
|
186 |
+
except Exception as e:
|
187 |
+
logger.error(f"Error launching the application: {str(e)}")
|