Update app.py
Browse files
app.py
CHANGED
@@ -50,13 +50,17 @@ def load_model():
|
|
50 |
snapshot_download(
|
51 |
repo_id=model_name,
|
52 |
use_auth_token=hf_token,
|
53 |
-
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
54 |
-
ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt"
|
55 |
)
|
56 |
|
57 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
58 |
model.to(device)
|
|
|
59 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
60 |
logger.info(f"Orpheus model and tokenizer loaded to {device}")
|
61 |
except Exception as e:
|
62 |
logger.error(f"Error loading model: {str(e)}")
|
|
|
50 |
snapshot_download(
|
51 |
repo_id=model_name,
|
52 |
use_auth_token=hf_token,
|
53 |
+
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json", "vocab.json", "merges.txt", "tokenizer.json"],
|
54 |
+
ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt"]
|
55 |
)
|
56 |
|
57 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
58 |
model.to(device)
|
59 |
+
|
60 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
if tokenizer is None:
|
62 |
+
raise ValueError("Failed to load tokenizer")
|
63 |
+
|
64 |
logger.info(f"Orpheus model and tokenizer loaded to {device}")
|
65 |
except Exception as e:
|
66 |
logger.error(f"Error loading model: {str(e)}")
|