Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,16 @@ import google.generativeai as genai
|
|
3 |
import numpy as np
|
4 |
import re
|
5 |
import torch
|
6 |
-
import torchaudio
|
7 |
-
import torchaudio.functional as F
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from huggingface_hub import snapshot_download, login
|
10 |
import logging
|
11 |
import os
|
12 |
import spaces
|
13 |
import warnings
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Set up logging
|
16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
@@ -21,19 +23,22 @@ warnings.filterwarnings("ignore", category=UserWarning)
|
|
21 |
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
22 |
|
23 |
def get_device():
|
24 |
-
if torch.cuda.is_available()
|
25 |
-
return torch.device("cuda")
|
26 |
-
return torch.device("cpu")
|
27 |
|
28 |
device = get_device()
|
29 |
logger.info(f"Using device: {device}")
|
30 |
|
31 |
model = None
|
32 |
tokenizer = None
|
|
|
33 |
|
34 |
@spaces.GPU()
|
35 |
def load_model():
|
36 |
-
global model, tokenizer
|
|
|
|
|
|
|
|
|
37 |
|
38 |
logger.info("Loading Orpheus model...")
|
39 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
@@ -67,7 +72,7 @@ def load_model():
|
|
67 |
]
|
68 |
)
|
69 |
|
70 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.
|
71 |
model.to(device)
|
72 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
logger.info(f"Orpheus model and tokenizer loaded to {device}")
|
@@ -108,42 +113,102 @@ def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts
|
|
108 |
logger.error(f"Error generating podcast script: {str(e)}")
|
109 |
raise
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
@spaces.GPU()
|
112 |
-
def text_to_speech(text, voice):
|
113 |
-
global model, tokenizer
|
|
|
|
|
|
|
114 |
try:
|
115 |
-
|
116 |
-
load_model()
|
117 |
|
118 |
-
# Remove emotion tags for TTS processing
|
119 |
-
clean_text = re.sub(r'<[^>]+>', '', text)
|
120 |
-
|
121 |
-
inputs = tokenizer(clean_text, return_tensors="pt").to(device)
|
122 |
with torch.no_grad():
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
#
|
137 |
-
audio = F.griffinlim(mel_reshaped.unsqueeze(0), n_iter=10, n_fft=2048, hop_length=512, win_length=2048)
|
138 |
-
|
139 |
-
# Convert to numpy array and ensure it's in the correct format
|
140 |
-
audio_np = audio.squeeze().numpy()
|
141 |
-
audio_np = np.clip(audio_np, -1, 1)
|
142 |
-
|
143 |
-
return (24000, audio_np.astype(np.float32)) # Assuming 24kHz sample rate
|
144 |
except Exception as e:
|
145 |
logger.error(f"Error in text_to_speech: {str(e)}")
|
146 |
raise
|
|
|
147 |
@spaces.GPU()
|
148 |
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
149 |
try:
|
@@ -153,7 +218,7 @@ def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
|
153 |
for i, line in enumerate(lines):
|
154 |
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
|
155 |
try:
|
156 |
-
|
157 |
audio_segments.append(audio)
|
158 |
except Exception as e:
|
159 |
logger.error(f"Error processing audio segment: {str(e)}")
|
@@ -173,6 +238,7 @@ def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
|
173 |
logger.error(f"Error rendering podcast: {str(e)}")
|
174 |
raise
|
175 |
|
|
|
176 |
with gr.Blocks() as demo:
|
177 |
gr.Markdown("# AI Podcast Generator")
|
178 |
|
|
|
3 |
import numpy as np
|
4 |
import re
|
5 |
import torch
|
|
|
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from huggingface_hub import snapshot_download, login
|
8 |
import logging
|
9 |
import os
|
10 |
import spaces
|
11 |
import warnings
|
12 |
+
from snac import SNAC
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
23 |
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
24 |
|
25 |
def get_device():
|
26 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
27 |
|
28 |
device = get_device()
|
29 |
logger.info(f"Using device: {device}")
|
30 |
|
31 |
model = None
|
32 |
tokenizer = None
|
33 |
+
snac_model = None
|
34 |
|
35 |
@spaces.GPU()
|
36 |
def load_model():
|
37 |
+
global model, tokenizer, snac_model
|
38 |
+
|
39 |
+
logger.info("Loading SNAC model...")
|
40 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
41 |
+
snac_model = snac_model.to(device)
|
42 |
|
43 |
logger.info("Loading Orpheus model...")
|
44 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
|
|
72 |
]
|
73 |
)
|
74 |
|
75 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
76 |
model.to(device)
|
77 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
78 |
logger.info(f"Orpheus model and tokenizer loaded to {device}")
|
|
|
113 |
logger.error(f"Error generating podcast script: {str(e)}")
|
114 |
raise
|
115 |
|
116 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
117 |
+
prompt = f"{voice}: {prompt}"
|
118 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
119 |
+
|
120 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
121 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
122 |
+
|
123 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
124 |
+
|
125 |
+
# No padding needed for single input
|
126 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
127 |
+
|
128 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
129 |
+
|
130 |
+
def parse_output(generated_ids):
|
131 |
+
token_to_find = 128257
|
132 |
+
token_to_remove = 128258
|
133 |
+
|
134 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
135 |
+
|
136 |
+
if len(token_indices[1]) > 0:
|
137 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
138 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
139 |
+
else:
|
140 |
+
cropped_tensor = generated_ids
|
141 |
+
|
142 |
+
processed_rows = []
|
143 |
+
for row in cropped_tensor:
|
144 |
+
masked_row = row[row != token_to_remove]
|
145 |
+
processed_rows.append(masked_row)
|
146 |
+
|
147 |
+
code_lists = []
|
148 |
+
for row in processed_rows:
|
149 |
+
row_length = row.size(0)
|
150 |
+
new_length = (row_length // 7) * 7
|
151 |
+
trimmed_row = row[:new_length]
|
152 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
153 |
+
code_lists.append(trimmed_row)
|
154 |
+
|
155 |
+
return code_lists[0] # Return just the first one for single sample
|
156 |
+
|
157 |
+
def redistribute_codes(code_list, snac_model):
|
158 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
159 |
+
|
160 |
+
layer_1 = []
|
161 |
+
layer_2 = []
|
162 |
+
layer_3 = []
|
163 |
+
for i in range((len(code_list)+1)//7):
|
164 |
+
layer_1.append(code_list[7*i])
|
165 |
+
layer_2.append(code_list[7*i+1]-4096)
|
166 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
167 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
168 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
169 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
170 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
171 |
+
|
172 |
+
# Move tensors to the same device as the SNAC model
|
173 |
+
codes = [
|
174 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
175 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
176 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
177 |
+
]
|
178 |
+
|
179 |
+
audio_hat = snac_model.decode(codes)
|
180 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
181 |
+
|
182 |
@spaces.GPU()
|
183 |
+
def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200):
|
184 |
+
global model, tokenizer, snac_model
|
185 |
+
if not text.strip():
|
186 |
+
return None
|
187 |
+
|
188 |
try:
|
189 |
+
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
|
|
190 |
|
|
|
|
|
|
|
|
|
191 |
with torch.no_grad():
|
192 |
+
generated_ids = model.generate(
|
193 |
+
input_ids=input_ids,
|
194 |
+
attention_mask=attention_mask,
|
195 |
+
max_new_tokens=max_new_tokens,
|
196 |
+
do_sample=True,
|
197 |
+
temperature=temperature,
|
198 |
+
top_p=top_p,
|
199 |
+
repetition_penalty=repetition_penalty,
|
200 |
+
num_return_sequences=1,
|
201 |
+
eos_token_id=128258,
|
202 |
+
)
|
203 |
|
204 |
+
code_list = parse_output(generated_ids)
|
205 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
206 |
|
207 |
+
return (24000, audio_samples) # Return sample rate and audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
except Exception as e:
|
209 |
logger.error(f"Error in text_to_speech: {str(e)}")
|
210 |
raise
|
211 |
+
|
212 |
@spaces.GPU()
|
213 |
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
214 |
try:
|
|
|
218 |
for i, line in enumerate(lines):
|
219 |
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
|
220 |
try:
|
221 |
+
sample_rate, audio = text_to_speech(line, voice)
|
222 |
audio_segments.append(audio)
|
223 |
except Exception as e:
|
224 |
logger.error(f"Error processing audio segment: {str(e)}")
|
|
|
238 |
logger.error(f"Error rendering podcast: {str(e)}")
|
239 |
raise
|
240 |
|
241 |
+
# Gradio Interface
|
242 |
with gr.Blocks() as demo:
|
243 |
gr.Markdown("# AI Podcast Generator")
|
244 |
|