Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import gradio as gr
|
2 |
import google.generativeai as genai
|
3 |
import numpy as np
|
4 |
import re
|
@@ -14,62 +14,40 @@ from dotenv import load_dotenv
|
|
14 |
|
15 |
load_dotenv()
|
16 |
|
17 |
-
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
# Suppress specific warnings
|
22 |
warnings.filterwarnings("ignore", category=UserWarning)
|
23 |
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
24 |
|
25 |
-
|
26 |
-
return "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
-
|
28 |
-
device = get_device()
|
29 |
logger.info(f"Using device: {device}")
|
30 |
|
31 |
model = None
|
32 |
tokenizer = None
|
33 |
snac_model = None
|
34 |
|
35 |
-
@spaces.GPU()
|
36 |
def load_model():
|
37 |
global model, tokenizer, snac_model
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
try:
|
51 |
login(token=hf_token)
|
52 |
|
53 |
snapshot_download(
|
54 |
repo_id=model_name,
|
55 |
use_auth_token=hf_token,
|
56 |
-
allow_patterns=[
|
57 |
-
|
58 |
-
"*.safetensors",
|
59 |
-
"model.safetensors.index.json",
|
60 |
-
],
|
61 |
-
ignore_patterns=[
|
62 |
-
"optimizer.pt",
|
63 |
-
"pytorch_model.bin",
|
64 |
-
"training_args.bin",
|
65 |
-
"scheduler.pt",
|
66 |
-
"tokenizer.json",
|
67 |
-
"tokenizer_config.json",
|
68 |
-
"special_tokens_map.json",
|
69 |
-
"vocab.json",
|
70 |
-
"merges.txt",
|
71 |
-
"tokenizer.*"
|
72 |
-
]
|
73 |
)
|
74 |
|
75 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
@@ -80,7 +58,100 @@ def load_model():
|
|
80 |
logger.error(f"Error loading model: {str(e)}")
|
81 |
raise
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200):
|
85 |
global model, tokenizer, snac_model
|
86 |
if model is None or tokenizer is None or snac_model is None:
|
@@ -108,12 +179,11 @@ def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=
|
|
108 |
code_list = parse_output(generated_ids)
|
109 |
audio_samples = redistribute_codes(code_list, snac_model)
|
110 |
|
111 |
-
return (24000, audio_samples)
|
112 |
except Exception as e:
|
113 |
logger.error(f"Error in text_to_speech: {str(e)}")
|
114 |
raise
|
115 |
|
116 |
-
@spaces.GPU()
|
117 |
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
118 |
try:
|
119 |
lines = [line for line in script.split('\n') if line.strip()]
|
@@ -122,8 +192,10 @@ def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
|
122 |
for i, line in enumerate(lines):
|
123 |
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
|
124 |
try:
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
except Exception as e:
|
128 |
logger.error(f"Error processing audio segment: {str(e)}")
|
129 |
|
@@ -132,8 +204,6 @@ def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
|
132 |
return (24000, np.zeros(24000, dtype=np.float32))
|
133 |
|
134 |
podcast_audio = np.concatenate(audio_segments)
|
135 |
-
|
136 |
-
# Ensure the audio is in the correct format for Gradio
|
137 |
podcast_audio = np.clip(podcast_audio, -1, 1)
|
138 |
podcast_audio = (podcast_audio * 32767).astype(np.int16)
|
139 |
|
@@ -142,11 +212,43 @@ def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
|
142 |
logger.error(f"Error rendering podcast: {str(e)}")
|
143 |
raise
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
try:
|
149 |
-
load_model()
|
150 |
demo.launch()
|
151 |
except Exception as e:
|
152 |
logger.error(f"Error launching the application: {str(e)}")
|
|
|
1 |
+
]import gradio as gr
|
2 |
import google.generativeai as genai
|
3 |
import numpy as np
|
4 |
import re
|
|
|
14 |
|
15 |
load_dotenv()
|
16 |
|
|
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
|
|
20 |
warnings.filterwarnings("ignore", category=UserWarning)
|
21 |
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
22 |
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
24 |
logger.info(f"Using device: {device}")
|
25 |
|
26 |
model = None
|
27 |
tokenizer = None
|
28 |
snac_model = None
|
29 |
|
|
|
30 |
def load_model():
|
31 |
global model, tokenizer, snac_model
|
32 |
+
try:
|
33 |
+
logger.info("Loading SNAC model...")
|
34 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
35 |
+
snac_model = snac_model.to(device)
|
36 |
+
|
37 |
+
logger.info("Loading Orpheus model...")
|
38 |
+
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
39 |
|
40 |
+
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
41 |
+
if not hf_token:
|
42 |
+
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
43 |
|
|
|
44 |
login(token=hf_token)
|
45 |
|
46 |
snapshot_download(
|
47 |
repo_id=model_name,
|
48 |
use_auth_token=hf_token,
|
49 |
+
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
50 |
+
ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt", "tokenizer.*"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
|
53 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
|
|
58 |
logger.error(f"Error loading model: {str(e)}")
|
59 |
raise
|
60 |
|
61 |
+
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
|
62 |
+
try:
|
63 |
+
genai.configure(api_key=api_key)
|
64 |
+
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
|
65 |
+
|
66 |
+
combined_content = content or ""
|
67 |
+
if uploaded_file:
|
68 |
+
file_content = uploaded_file.read().decode('utf-8')
|
69 |
+
combined_content += "\n" + file_content if combined_content else file_content
|
70 |
+
|
71 |
+
prompt = f"""
|
72 |
+
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
|
73 |
+
{combined_content}
|
74 |
+
|
75 |
+
Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
|
76 |
+
Use speech fillers like um, ah. Vary emotional tone.
|
77 |
+
|
78 |
+
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
|
79 |
+
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
|
80 |
+
|
81 |
+
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
|
82 |
+
|
83 |
+
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
|
84 |
+
|
85 |
+
Ensure content flows naturally and stays on topic. Match the script length to {duration}.
|
86 |
+
"""
|
87 |
+
|
88 |
+
response = model.generate_content(prompt)
|
89 |
+
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Error generating podcast script: {str(e)}")
|
92 |
+
raise
|
93 |
+
|
94 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
95 |
+
prompt = f"{voice}: {prompt}"
|
96 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
97 |
+
|
98 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64)
|
99 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
100 |
+
|
101 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
102 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
103 |
+
|
104 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
105 |
+
|
106 |
+
def parse_output(generated_ids):
|
107 |
+
token_to_find = 128257
|
108 |
+
token_to_remove = 128258
|
109 |
+
|
110 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
111 |
+
|
112 |
+
if len(token_indices[1]) > 0:
|
113 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
114 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
115 |
+
else:
|
116 |
+
cropped_tensor = generated_ids
|
117 |
+
|
118 |
+
processed_rows = []
|
119 |
+
for row in cropped_tensor:
|
120 |
+
masked_row = row[row != token_to_remove]
|
121 |
+
processed_rows.append(masked_row)
|
122 |
+
|
123 |
+
code_lists = []
|
124 |
+
for row in processed_rows:
|
125 |
+
row_length = row.size(0)
|
126 |
+
new_length = (row_length // 7) * 7
|
127 |
+
trimmed_row = row[:new_length]
|
128 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
129 |
+
code_lists.append(trimmed_row)
|
130 |
+
|
131 |
+
return code_lists[0]
|
132 |
+
|
133 |
+
def redistribute_codes(code_list, snac_model):
|
134 |
+
device = next(snac_model.parameters()).device
|
135 |
+
|
136 |
+
layer_1, layer_2, layer_3 = [], [], []
|
137 |
+
for i in range((len(code_list)+1)//7):
|
138 |
+
layer_1.append(code_list[7*i])
|
139 |
+
layer_2.append(code_list[7*i+1]-4096)
|
140 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
141 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
142 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
143 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
144 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
145 |
+
|
146 |
+
codes = [
|
147 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
148 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
149 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
150 |
+
]
|
151 |
+
|
152 |
+
audio_hat = snac_model.decode(codes)
|
153 |
+
return audio_hat.detach().squeeze().cpu().numpy()
|
154 |
+
|
155 |
def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200):
|
156 |
global model, tokenizer, snac_model
|
157 |
if model is None or tokenizer is None or snac_model is None:
|
|
|
179 |
code_list = parse_output(generated_ids)
|
180 |
audio_samples = redistribute_codes(code_list, snac_model)
|
181 |
|
182 |
+
return (24000, audio_samples)
|
183 |
except Exception as e:
|
184 |
logger.error(f"Error in text_to_speech: {str(e)}")
|
185 |
raise
|
186 |
|
|
|
187 |
def render_podcast(api_key, script, voice1, voice2, num_hosts):
|
188 |
try:
|
189 |
lines = [line for line in script.split('\n') if line.strip()]
|
|
|
192 |
for i, line in enumerate(lines):
|
193 |
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
|
194 |
try:
|
195 |
+
result = text_to_speech(line, voice)
|
196 |
+
if result is not None:
|
197 |
+
sample_rate, audio = result
|
198 |
+
audio_segments.append(audio)
|
199 |
except Exception as e:
|
200 |
logger.error(f"Error processing audio segment: {str(e)}")
|
201 |
|
|
|
204 |
return (24000, np.zeros(24000, dtype=np.float32))
|
205 |
|
206 |
podcast_audio = np.concatenate(audio_segments)
|
|
|
|
|
207 |
podcast_audio = np.clip(podcast_audio, -1, 1)
|
208 |
podcast_audio = (podcast_audio * 32767).astype(np.int16)
|
209 |
|
|
|
212 |
logger.error(f"Error rendering podcast: {str(e)}")
|
213 |
raise
|
214 |
|
215 |
+
with gr.Blocks() as demo:
|
216 |
+
gr.Markdown("# AI Podcast Generator")
|
217 |
+
|
218 |
+
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password")
|
219 |
+
|
220 |
+
with gr.Row():
|
221 |
+
content_input = gr.Textbox(label="Paste your content (optional)")
|
222 |
+
document_upload = gr.File(label="Upload Document (optional)")
|
223 |
+
|
224 |
+
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration")
|
225 |
+
num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2)
|
226 |
+
|
227 |
+
voice_options = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
|
228 |
+
voice1_select = gr.Dropdown(label="Select Voice 1", choices=voice_options, value="tara")
|
229 |
+
voice2_select = gr.Dropdown(label="Select Voice 2", choices=voice_options, value="leo")
|
230 |
+
|
231 |
+
generate_btn = gr.Button("Generate Script")
|
232 |
+
script_output = gr.Textbox(label="Generated Script", lines=10)
|
233 |
+
|
234 |
+
render_btn = gr.Button("Render Podcast")
|
235 |
+
audio_output = gr.Audio(label="Generated Podcast")
|
236 |
+
|
237 |
+
generate_btn.click(generate_podcast_script,
|
238 |
+
inputs=[api_key_input, content_input, document_upload, duration, num_hosts],
|
239 |
+
outputs=script_output)
|
240 |
+
|
241 |
+
render_btn.click(render_podcast,
|
242 |
+
inputs=[api_key_input, script_output, voice1_select, voice2_select, num_hosts],
|
243 |
+
outputs=audio_output)
|
244 |
+
|
245 |
+
num_hosts.change(lambda x: gr.update(visible=x == 2),
|
246 |
+
inputs=[num_hosts],
|
247 |
+
outputs=[voice2_select])
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
try:
|
251 |
+
load_model()
|
252 |
demo.launch()
|
253 |
except Exception as e:
|
254 |
logger.error(f"Error launching the application: {str(e)}")
|