import gradio as gr import google.generativeai as genai import numpy as np import edge_tts import asyncio import io import re # Set up logging import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize Gemini AI genai.configure(api_key='YOUR_GEMINI_API_KEY') def generate_podcast_script(api_key, content, duration): genai.configure(api_key=api_key) model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') prompt = f""" Create a podcast script for two people discussing the following content: {content} The podcast should last approximately {duration}. Include natural speech patterns, humor, and occasional off-topic chit-chat. Use speech fillers like um, ah, yes, I see, Ok now. Vary the emotional tone. Format the script as alternating lines of dialogue without speaker labels. Do not use any special characters, markdown, or formatting. Only include the alternating dialogue lines. Ensure the conversation flows naturally and stays relevant to the topic. Limit the script length to match the requested duration of {duration}. """ response = model.generate_content(prompt) # Remove any special characters that might be read aloud clean_text = re.sub(r'[^a-zA-Z0-9\s.,?!]', '', response.text) return clean_text async def text_to_speech(text, voice): communicate = edge_tts.Communicate(text, voice) audio = io.BytesIO() async for chunk in communicate.stream(): if chunk["type"] == "audio": audio.write(chunk["data"]) audio.seek(0) return audio.read() async def render_podcast(api_key, script, voice1, voice2): lines = script.split('\n') audio_segments = [] for i, line in enumerate(lines): if line.strip(): # Skip empty lines voice = voice1 if i % 2 == 0 else voice2 audio = await text_to_speech(line, voice) audio_segments.append(audio) if not audio_segments: logger.warning("No valid audio segments were generated.") return (24000, np.zeros(24000, dtype=np.int16)) # Return silence if no valid audio was generated # Concatenate audio segments podcast_audio = b''.join(audio_segments) # Convert to numpy array podcast_audio = np.frombuffer(podcast_audio, dtype=np.int16) return (24000, podcast_audio) # edge-tts uses 24000 Hz sample rate async def get_voice_list(): voices = await edge_tts.list_voices() voice_dict = {} for voice in voices: lang = voice["Locale"] if lang not in voice_dict: voice_dict[lang] = [] voice_dict[lang].append(voice["Name"]) return voice_dict # Language names dictionary (abbreviated for brevity) language_names = { 'en-US': 'English (United States)', 'en-GB': 'English (United Kingdom)', # ... (other languages) } # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# AI Podcast Generator") api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password") with gr.Row(): content_input = gr.Textbox(label="Paste your content or upload a document") document_upload = gr.File(label="Upload Document") duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration") voice_dict = asyncio.run(get_voice_list()) languages = list(voice_dict.keys()) with gr.Row(): lang1_select = gr.Dropdown(label="Select Language 1", choices=[f"{language_names.get(lang, lang)}" for lang in languages], value="English (United States)") voice1_select = gr.Dropdown(label="Select Voice 1", value="en-US-AnaNeural") with gr.Row(): lang2_select = gr.Dropdown(label="Select Language 2", choices=[f"{language_names.get(lang, lang)}" for lang in languages], value="English (United States)") voice2_select = gr.Dropdown(label="Select Voice 2", value="en-US-MichelleNeural") generate_btn = gr.Button("Generate Script") script_output = gr.Textbox(label="Generated Script", lines=10) render_btn = gr.Button("Render Podcast") audio_output = gr.Audio(label="Generated Podcast") def update_voices(lang): selected_lang = next((key for key, value in language_names.items() if value == lang), None) return gr.Dropdown(choices=voice_dict.get(selected_lang, [])) lang1_select.change(update_voices, inputs=[lang1_select], outputs=[voice1_select]) lang2_select.change(update_voices, inputs=[lang2_select], outputs=[voice2_select]) def generate_script_wrapper(api_key, content, duration): return generate_podcast_script(api_key, content, duration) async def render_podcast_wrapper(api_key, script, voice1, voice2): return await render_podcast(api_key, script, voice1, voice2) generate_btn.click(generate_script_wrapper, inputs=[api_key_input, content_input, duration], outputs=script_output) render_btn.click(render_podcast_wrapper, inputs=[api_key_input, script_output, voice1_select, voice2_select], outputs=audio_output) if __name__ == "__main__": demo.launch()