Spaces:
Paused
Paused
Update app.py via AI Editor
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ import openai
|
|
14 |
import base64
|
15 |
import datetime
|
16 |
from werkzeug.utils import secure_filename
|
|
|
17 |
|
18 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(threadName)s %(message)s")
|
19 |
logger = logging.getLogger("AskTricare")
|
@@ -112,6 +113,61 @@ def embed_docs_folder():
|
|
112 |
|
113 |
embed_docs_folder()
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
app = dash.Dash(
|
116 |
__name__,
|
117 |
server=app_flask,
|
@@ -200,14 +256,20 @@ def user_input_card():
|
|
200 |
placeholder="Type your question...",
|
201 |
style={"width": "100%", "height": "60px", "resize": "vertical", "wordWrap": "break-word"},
|
202 |
wrap="soft",
|
203 |
-
maxLength=1000
|
|
|
|
|
204 |
),
|
|
|
205 |
html.Div([
|
206 |
dbc.Button("Send", id="send-btn", color="primary", className="mt-2 me-2", style={"minWidth": "100px"}),
|
207 |
dbc.Button("New Chat", id="new-chat-btn", color="secondary", className="mt-2", style={"minWidth": "110px"}),
|
208 |
], style={"float": "right", "display": "flex", "gap": "0.5rem"}),
|
|
|
|
|
209 |
], style={"marginTop": "1rem"}),
|
210 |
html.Div(id="error-message", style={"color": "#bb2124", "marginTop": "0.5rem"}),
|
|
|
211 |
])
|
212 |
)
|
213 |
|
@@ -216,7 +278,8 @@ def right_main_static():
|
|
216 |
chat_box_card(),
|
217 |
user_input_card(),
|
218 |
dcc.Loading(id="loading", type="default", fullscreen=False, style={"position": "absolute", "top": "5%", "left": "50%"}),
|
219 |
-
dcc.Interval(id="stream-interval", interval=400, n_intervals=0, disabled=True, max_intervals=1000)
|
|
|
220 |
], style={"padding": "1rem", "backgroundColor": "#fff", "height": "100vh", "overflowY": "auto"})
|
221 |
|
222 |
app.layout = html.Div([
|
@@ -228,9 +291,35 @@ app.layout = html.Div([
|
|
228 |
html.Div(right_main_static(), id='right-main', style={"marginLeft": "30vw", "width": "70vw", "overflowY": "auto"})
|
229 |
], style={"display": "flex"}),
|
230 |
dcc.Store(id="clear-input", data=False),
|
231 |
-
dcc.Store(id="scroll-bottom", data=0)
|
|
|
|
|
232 |
])
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
def _is_supported_doc(filename):
|
235 |
ext = os.path.splitext(filename)[1].lower()
|
236 |
return ext in [".txt", ".pdf", ".md", ".docx"]
|
@@ -245,7 +334,6 @@ def _extract_text_from_upload(filepath, ext):
|
|
245 |
except Exception as e:
|
246 |
logger.error(f"Error reading {filepath}: {e}")
|
247 |
return ""
|
248 |
-
# For .pdf/.docx, could add extraction with extra dependencies
|
249 |
else:
|
250 |
return ""
|
251 |
|
@@ -276,13 +364,14 @@ def assign_session_id(_):
|
|
276 |
Input("new-chat-btn", "n_clicks"),
|
277 |
Input("stream-interval", "n_intervals"),
|
278 |
Input({"type": "chat-history-item", "index": dash.ALL}, "n_clicks"),
|
|
|
279 |
State("file-upload", "filename"),
|
280 |
State("user-input", "value"),
|
281 |
State("selected-history", "data"),
|
282 |
State("chat-history-list", "children"),
|
283 |
prevent_initial_call=False
|
284 |
)
|
285 |
-
def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, stream_n, chat_history_clicks, file_names, user_input, selected_history, chat_history_list_children):
|
286 |
trigger = callback_context.triggered[0]['prop_id'].split('.')[0] if callback_context.triggered else ""
|
287 |
session_id = session_id or get_session_id()
|
288 |
session_lock = get_session_lock(session_id)
|
@@ -341,7 +430,7 @@ def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, strea
|
|
341 |
history_index_clicked
|
342 |
)
|
343 |
|
344 |
-
# Handle File Upload
|
345 |
file_was_uploaded_and_sent = False
|
346 |
if trigger == "file-upload" and file_contents and file_names:
|
347 |
uploads = []
|
@@ -358,80 +447,60 @@ def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, strea
|
|
358 |
with open(fp, "wb") as f:
|
359 |
f.write(base64.b64decode(data))
|
360 |
uploads.append({"name": fname, "is_img": is_img, "path": fp})
|
361 |
-
# If document, extract text and send to OpenAI as a message (system or user)
|
362 |
if _is_supported_doc(n) and not is_img:
|
363 |
text = _extract_text_from_upload(fp, ext)
|
364 |
if text.strip():
|
365 |
-
|
366 |
-
|
367 |
-
state["messages"].append({"role": "user", "content": doc_intro})
|
368 |
-
state["streaming"] = True
|
369 |
-
state["stream_buffer"] = ""
|
370 |
-
file_was_uploaded_and_sent = True
|
371 |
-
logger.info(f"Session {session_id}: Uploaded doc '{n}' sent to OpenAI")
|
372 |
state["uploads"].extend(uploads)
|
373 |
save_session_state(session_id)
|
374 |
logger.info(f"Session {session_id}: Uploaded files {[u['name'] for u in uploads]}")
|
375 |
|
376 |
-
#
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
system_prompt = load_system_prompt()
|
381 |
-
msg_list = [{"role": "system", "content": system_prompt}]
|
382 |
-
for m in messages:
|
383 |
-
msg_list.append({"role": m["role"], "content": m["content"]})
|
384 |
-
response = openai.ChatCompletion.create(
|
385 |
-
model="gpt-3.5-turbo",
|
386 |
-
messages=msg_list,
|
387 |
-
max_tokens=700,
|
388 |
-
temperature=0.2,
|
389 |
-
stream=True,
|
390 |
-
)
|
391 |
-
reply = ""
|
392 |
-
for chunk in response:
|
393 |
-
delta = chunk["choices"][0]["delta"]
|
394 |
-
content = delta.get("content", "")
|
395 |
-
if content:
|
396 |
-
reply += content
|
397 |
-
session_lock = get_session_lock(session_id)
|
398 |
-
with session_lock:
|
399 |
-
load_session_state(session_id)
|
400 |
-
state = get_session_state(session_id)
|
401 |
-
state["stream_buffer"] = reply
|
402 |
-
save_session_state(session_id)
|
403 |
-
session_lock = get_session_lock(session_id)
|
404 |
-
with session_lock:
|
405 |
-
load_session_state(session_id)
|
406 |
-
state = get_session_state(session_id)
|
407 |
-
state["messages"].append({"role": "assistant", "content": reply})
|
408 |
-
state["stream_buffer"] = ""
|
409 |
-
state["streaming"] = False
|
410 |
-
save_session_state(session_id)
|
411 |
-
logger.info(f"Session {session_id}: Doc Q&A: Assistant: {reply}")
|
412 |
-
except Exception as e:
|
413 |
-
session_lock = get_session_lock(session_id)
|
414 |
-
with session_lock:
|
415 |
-
load_session_state(session_id)
|
416 |
-
state = get_session_state(session_id)
|
417 |
-
state["streaming"] = False
|
418 |
-
state["stream_buffer"] = ""
|
419 |
-
save_session_state(session_id)
|
420 |
-
logger.error(f"Session {session_id}: Streaming error (doc upload): {e}")
|
421 |
-
threading.Thread(target=run_stream, args=(session_id, list(state["messages"])), daemon=True).start()
|
422 |
-
start_streaming = True
|
423 |
|
424 |
# Handle Send
|
425 |
-
if
|
426 |
-
|
|
|
427 |
state["streaming"] = True
|
428 |
state["stream_buffer"] = ""
|
429 |
save_session_state(session_id)
|
430 |
|
431 |
-
def run_stream(session_id, messages):
|
432 |
try:
|
433 |
system_prompt = load_system_prompt()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
msg_list = [{"role": "system", "content": system_prompt}]
|
|
|
|
|
435 |
for m in messages:
|
436 |
msg_list.append({"role": m["role"], "content": m["content"]})
|
437 |
response = openai.ChatCompletion.create(
|
@@ -461,7 +530,7 @@ def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, strea
|
|
461 |
state["stream_buffer"] = ""
|
462 |
state["streaming"] = False
|
463 |
save_session_state(session_id)
|
464 |
-
logger.info(f"Session {session_id}: User: {
|
465 |
except Exception as e:
|
466 |
session_lock = get_session_lock(session_id)
|
467 |
with session_lock:
|
@@ -472,7 +541,7 @@ def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, strea
|
|
472 |
save_session_state(session_id)
|
473 |
logger.error(f"Session {session_id}: Streaming error: {e}")
|
474 |
|
475 |
-
threading.Thread(target=run_stream, args=(session_id, list(state["messages"])), daemon=True).start()
|
476 |
start_streaming = True
|
477 |
|
478 |
# Handle New Chat button logic: auto-name and reset
|
@@ -577,7 +646,7 @@ def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, strea
|
|
577 |
chat_cards.append(chat_message_card(state["stream_buffer"], is_user=False))
|
578 |
return upload_cards, chat_history_items, chat_cards, error, False, 0, "", selected_history
|
579 |
# Always clear input after send
|
580 |
-
if
|
581 |
return upload_cards, chat_history_items, chat_cards, error, (not state.get("streaming", False)), 0, "", selected_history
|
582 |
return upload_cards, chat_history_items, chat_cards, error, (not state.get("streaming", False)), 0, user_input or "", selected_history
|
583 |
|
|
|
14 |
import base64
|
15 |
import datetime
|
16 |
from werkzeug.utils import secure_filename
|
17 |
+
import numpy as np
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(threadName)s %(message)s")
|
20 |
logger = logging.getLogger("AskTricare")
|
|
|
113 |
|
114 |
embed_docs_folder()
|
115 |
|
116 |
+
def embed_user_doc(session_id, filename, text):
|
117 |
+
session_dir = get_session_dir(session_id)
|
118 |
+
if not text.strip():
|
119 |
+
return
|
120 |
+
try:
|
121 |
+
chunk = text[:4000]
|
122 |
+
response = openai.Embedding.create(
|
123 |
+
input=[chunk],
|
124 |
+
model=EMBEDDING_MODEL
|
125 |
+
)
|
126 |
+
embedding = response['data'][0]['embedding']
|
127 |
+
user_embeds_path = os.path.join(session_dir, "user_embeds.json")
|
128 |
+
if os.path.exists(user_embeds_path):
|
129 |
+
with open(user_embeds_path, "r") as f:
|
130 |
+
user_embeds = json.load(f)
|
131 |
+
else:
|
132 |
+
user_embeds = {"embeddings": [], "texts": [], "filenames": []}
|
133 |
+
user_embeds["embeddings"].append(embedding)
|
134 |
+
user_embeds["texts"].append(chunk)
|
135 |
+
user_embeds["filenames"].append(filename)
|
136 |
+
with open(user_embeds_path, "w") as f:
|
137 |
+
json.dump(user_embeds, f)
|
138 |
+
logger.info(f"Session {session_id}: Embedded user doc {filename}")
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Session {session_id}: Failed to embed user doc {filename}: {e}")
|
141 |
+
|
142 |
+
def get_user_embeddings(session_id):
|
143 |
+
session_dir = get_session_dir(session_id)
|
144 |
+
user_embeds_path = os.path.join(session_dir, "user_embeds.json")
|
145 |
+
if os.path.exists(user_embeds_path):
|
146 |
+
with open(user_embeds_path, "r") as f:
|
147 |
+
d = json.load(f)
|
148 |
+
embeds = np.array(d.get("embeddings", []))
|
149 |
+
texts = d.get("texts", [])
|
150 |
+
filenames = d.get("filenames", [])
|
151 |
+
return embeds, texts, filenames
|
152 |
+
return np.array([]), [], []
|
153 |
+
|
154 |
+
def semantic_search(query, embed_matrix, texts, filenames, top_k=2):
|
155 |
+
if len(embed_matrix) == 0:
|
156 |
+
return []
|
157 |
+
try:
|
158 |
+
q_embed = openai.Embedding.create(input=[query], model=EMBEDDING_MODEL)["data"][0]["embedding"]
|
159 |
+
q_embed = np.array(q_embed)
|
160 |
+
embed_matrix = np.array(embed_matrix)
|
161 |
+
scores = np.dot(embed_matrix, q_embed) / (np.linalg.norm(embed_matrix, axis=1) * np.linalg.norm(q_embed) + 1e-8)
|
162 |
+
idx = np.argsort(scores)[::-1][:top_k]
|
163 |
+
results = []
|
164 |
+
for i in idx:
|
165 |
+
results.append({"filename": filenames[i], "text": texts[i], "score": float(scores[i])})
|
166 |
+
return results
|
167 |
+
except Exception as e:
|
168 |
+
logger.error(f"Semantic search error: {e}")
|
169 |
+
return []
|
170 |
+
|
171 |
app = dash.Dash(
|
172 |
__name__,
|
173 |
server=app_flask,
|
|
|
256 |
placeholder="Type your question...",
|
257 |
style={"width": "100%", "height": "60px", "resize": "vertical", "wordWrap": "break-word"},
|
258 |
wrap="soft",
|
259 |
+
maxLength=1000,
|
260 |
+
n_submit=0,
|
261 |
+
n_blur=0,
|
262 |
),
|
263 |
+
dcc.Store(id="enter-triggered", data=False),
|
264 |
html.Div([
|
265 |
dbc.Button("Send", id="send-btn", color="primary", className="mt-2 me-2", style={"minWidth": "100px"}),
|
266 |
dbc.Button("New Chat", id="new-chat-btn", color="secondary", className="mt-2", style={"minWidth": "110px"}),
|
267 |
], style={"float": "right", "display": "flex", "gap": "0.5rem"}),
|
268 |
+
dcc.Store(id="user-input-store", data="", storage_type="session"),
|
269 |
+
html.Button(id='hidden-send', style={'display': 'none'})
|
270 |
], style={"marginTop": "1rem"}),
|
271 |
html.Div(id="error-message", style={"color": "#bb2124", "marginTop": "0.5rem"}),
|
272 |
+
dcc.Store(id="should-clear-input", data=False)
|
273 |
])
|
274 |
)
|
275 |
|
|
|
278 |
chat_box_card(),
|
279 |
user_input_card(),
|
280 |
dcc.Loading(id="loading", type="default", fullscreen=False, style={"position": "absolute", "top": "5%", "left": "50%"}),
|
281 |
+
dcc.Interval(id="stream-interval", interval=400, n_intervals=0, disabled=True, max_intervals=1000),
|
282 |
+
dcc.Store(id="client-question", data="")
|
283 |
], style={"padding": "1rem", "backgroundColor": "#fff", "height": "100vh", "overflowY": "auto"})
|
284 |
|
285 |
app.layout = html.Div([
|
|
|
291 |
html.Div(right_main_static(), id='right-main', style={"marginLeft": "30vw", "width": "70vw", "overflowY": "auto"})
|
292 |
], style={"display": "flex"}),
|
293 |
dcc.Store(id="clear-input", data=False),
|
294 |
+
dcc.Store(id="scroll-bottom", data=0),
|
295 |
+
# clientside callback for textarea enter/shift-enter
|
296 |
+
dcc.Store(id="enter-pressed", data=False)
|
297 |
])
|
298 |
|
299 |
+
# JS callback to intercept Enter/Shift+Enter for dcc.Textarea
|
300 |
+
app.clientside_callback(
|
301 |
+
"""
|
302 |
+
function(n, value) {
|
303 |
+
var ta = document.getElementById('user-input');
|
304 |
+
if (!ta) return window.dash_clientside.no_update;
|
305 |
+
if (!window._asktricare_enter_handler) {
|
306 |
+
ta.addEventListener('keydown', function(e) {
|
307 |
+
if (e.key === 'Enter' && !e.shiftKey) {
|
308 |
+
e.preventDefault();
|
309 |
+
var btn = document.getElementById('hidden-send');
|
310 |
+
if (btn) btn.click();
|
311 |
+
}
|
312 |
+
});
|
313 |
+
window._asktricare_enter_handler = true;
|
314 |
+
}
|
315 |
+
return window.dash_clientside.no_update;
|
316 |
+
}
|
317 |
+
""",
|
318 |
+
Output('enter-pressed', 'data'),
|
319 |
+
Input('user-input', 'n_blur'),
|
320 |
+
State('user-input', 'value')
|
321 |
+
)
|
322 |
+
|
323 |
def _is_supported_doc(filename):
|
324 |
ext = os.path.splitext(filename)[1].lower()
|
325 |
return ext in [".txt", ".pdf", ".md", ".docx"]
|
|
|
334 |
except Exception as e:
|
335 |
logger.error(f"Error reading {filepath}: {e}")
|
336 |
return ""
|
|
|
337 |
else:
|
338 |
return ""
|
339 |
|
|
|
364 |
Input("new-chat-btn", "n_clicks"),
|
365 |
Input("stream-interval", "n_intervals"),
|
366 |
Input({"type": "chat-history-item", "index": dash.ALL}, "n_clicks"),
|
367 |
+
Input('hidden-send', 'n_clicks'),
|
368 |
State("file-upload", "filename"),
|
369 |
State("user-input", "value"),
|
370 |
State("selected-history", "data"),
|
371 |
State("chat-history-list", "children"),
|
372 |
prevent_initial_call=False
|
373 |
)
|
374 |
+
def main_callback(session_id, send_clicks, file_contents, new_chat_clicks, stream_n, chat_history_clicks, hidden_send_clicks, file_names, user_input, selected_history, chat_history_list_children):
|
375 |
trigger = callback_context.triggered[0]['prop_id'].split('.')[0] if callback_context.triggered else ""
|
376 |
session_id = session_id or get_session_id()
|
377 |
session_lock = get_session_lock(session_id)
|
|
|
430 |
history_index_clicked
|
431 |
)
|
432 |
|
433 |
+
# Handle File Upload
|
434 |
file_was_uploaded_and_sent = False
|
435 |
if trigger == "file-upload" and file_contents and file_names:
|
436 |
uploads = []
|
|
|
447 |
with open(fp, "wb") as f:
|
448 |
f.write(base64.b64decode(data))
|
449 |
uploads.append({"name": fname, "is_img": is_img, "path": fp})
|
|
|
450 |
if _is_supported_doc(n) and not is_img:
|
451 |
text = _extract_text_from_upload(fp, ext)
|
452 |
if text.strip():
|
453 |
+
embed_user_doc(session_id, fname, text)
|
454 |
+
logger.info(f"Session {session_id}: Uploaded doc '{n}' embedded for user vector store")
|
|
|
|
|
|
|
|
|
|
|
455 |
state["uploads"].extend(uploads)
|
456 |
save_session_state(session_id)
|
457 |
logger.info(f"Session {session_id}: Uploaded files {[u['name'] for u in uploads]}")
|
458 |
|
459 |
+
# Determine if send was triggered (via send-btn, hidden-send, or enter)
|
460 |
+
send_triggered = False
|
461 |
+
if trigger == "send-btn" or trigger == "hidden-send":
|
462 |
+
send_triggered = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
|
464 |
# Handle Send
|
465 |
+
if send_triggered and user_input and user_input.strip():
|
466 |
+
question = user_input.strip()
|
467 |
+
state["messages"].append({"role": "user", "content": question})
|
468 |
state["streaming"] = True
|
469 |
state["stream_buffer"] = ""
|
470 |
save_session_state(session_id)
|
471 |
|
472 |
+
def run_stream(session_id, messages, question):
|
473 |
try:
|
474 |
system_prompt = load_system_prompt()
|
475 |
+
# Retrieve relevant context from global RAG
|
476 |
+
rag_chunks = []
|
477 |
+
try:
|
478 |
+
# Search global docs
|
479 |
+
global_embeds = []
|
480 |
+
global_texts = []
|
481 |
+
global_fnames = []
|
482 |
+
for fname, emb in EMBEDDING_INDEX.items():
|
483 |
+
global_embeds.append(emb)
|
484 |
+
global_texts.append(EMBEDDING_TEXTS[fname])
|
485 |
+
global_fnames.append(fname)
|
486 |
+
global_rag = semantic_search(question, global_embeds, global_texts, global_fnames, top_k=2)
|
487 |
+
if global_rag:
|
488 |
+
for r in global_rag:
|
489 |
+
rag_chunks.append(f"Global doc [{r['filename']}]:\n{r['text'][:1000]}")
|
490 |
+
# Search user docs
|
491 |
+
user_embeds, user_texts, user_fnames = get_user_embeddings(session_id)
|
492 |
+
user_rag = semantic_search(question, user_embeds, user_texts, user_fnames, top_k=2)
|
493 |
+
if user_rag:
|
494 |
+
for r in user_rag:
|
495 |
+
rag_chunks.append(f"User upload [{r['filename']}]:\n{r['text'][:1000]}")
|
496 |
+
except Exception as e:
|
497 |
+
logger.error(f"Session {session_id}: RAG error: {e}")
|
498 |
+
context_block = ""
|
499 |
+
if rag_chunks:
|
500 |
+
context_block = "The following sources may help answer the question:\n\n" + "\n\n".join(rag_chunks) + "\n\n"
|
501 |
msg_list = [{"role": "system", "content": system_prompt}]
|
502 |
+
if context_block:
|
503 |
+
msg_list.append({"role": "system", "content": context_block})
|
504 |
for m in messages:
|
505 |
msg_list.append({"role": m["role"], "content": m["content"]})
|
506 |
response = openai.ChatCompletion.create(
|
|
|
530 |
state["stream_buffer"] = ""
|
531 |
state["streaming"] = False
|
532 |
save_session_state(session_id)
|
533 |
+
logger.info(f"Session {session_id}: User: {question} | Assistant: {reply}")
|
534 |
except Exception as e:
|
535 |
session_lock = get_session_lock(session_id)
|
536 |
with session_lock:
|
|
|
541 |
save_session_state(session_id)
|
542 |
logger.error(f"Session {session_id}: Streaming error: {e}")
|
543 |
|
544 |
+
threading.Thread(target=run_stream, args=(session_id, list(state["messages"]), question), daemon=True).start()
|
545 |
start_streaming = True
|
546 |
|
547 |
# Handle New Chat button logic: auto-name and reset
|
|
|
646 |
chat_cards.append(chat_message_card(state["stream_buffer"], is_user=False))
|
647 |
return upload_cards, chat_history_items, chat_cards, error, False, 0, "", selected_history
|
648 |
# Always clear input after send
|
649 |
+
if send_triggered:
|
650 |
return upload_cards, chat_history_items, chat_cards, error, (not state.get("streaming", False)), 0, "", selected_history
|
651 |
return upload_cards, chat_history_items, chat_cards, error, (not state.get("streaming", False)), 0, user_input or "", selected_history
|
652 |
|