File size: 4,430 Bytes
4fc79a4 12ce912 72c5969 bca92aa ec365ce 3c50a2d 4fc79a4 601022d 9a4fc1b ec365ce 422964b ec365ce 9a4fc1b bca92aa 9a4fc1b 72c5969 a5f2a3b 72c5969 a5f2a3b 72c5969 601022d 72c5969 3c50a2d 72c5969 9a4fc1b bca92aa ec365ce 72c5969 1b2886c ec365ce a5f2a3b 1b2886c a5f2a3b 1b2886c ec365ce 9a4fc1b 1b2886c 9a4fc1b 1b2886c b06a85b 1b2886c 12ce912 b06a85b 12ce912 9a4fc1b 3c50a2d ec365ce 3c50a2d b06a85b 9a4fc1b 601022d ec365ce 5be932a 23a3b49 ec365ce 601022d 6cff8d5 601022d bca92aa 601022d bca92aa 601022d b06a85b bca92aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import io
import ast
from PIL import Image, ImageDraw
import google.generativeai as genai
import traceback
def process_file(file, instructions, api_key):
try:
# Initialize Gemini
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
# Read uploaded file
file_path = file.name
df = pd.read_csv(file_path) if file_path.endswith('.csv') else pd.read_excel(file_path)
# Generate visualization code
response = model.generate_content(f"""
Analyze the following dataset and instructions:
Data columns: {list(df.columns)}
Instructions: {instructions}
Based on this, create 3 appropriate visualizations. For each visualization, provide:
1. A title
2. The most suitable plot type (choose from: bar, line, scatter, hist)
3. The column to use for the x-axis
4. The column(s) to use for the y-axis (can be a list for multiple columns, or None for histograms)
5. Any necessary data preprocessing steps (e.g., grouping, sorting, etc.)
Return your response as a Python list of dictionaries:
[
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}},
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}},
{{"title": "...", "plot_type": "...", "x": "...", "y": "...", "preprocessing": "..."}}
]
""")
# Extract code block safely
code_block = response.text
if '```python' in code_block:
code_block = code_block.split('```python')[1].split('```')[0].strip()
elif '```' in code_block:
code_block = code_block.split('```')[1].strip()
print("Generated code block:")
print(code_block)
plots = ast.literal_eval(code_block)
# Generate visualizations
images = []
for plot in plots[:3]: # Ensure max 3 plots
fig, ax = plt.subplots(figsize=(10, 6))
# Apply preprocessing if any
if plot['preprocessing']:
exec(plot['preprocessing'])
if plot['plot_type'] == 'bar':
df.plot(kind='bar', x=plot['x'], y=plot['y'], ax=ax)
elif plot['plot_type'] == 'line':
df.plot(kind='line', x=plot['x'], y=plot['y'], ax=ax)
elif plot['plot_type'] == 'scatter':
df.plot(kind='scatter', x=plot['x'], y=plot['y'], ax=ax)
elif plot['plot_type'] == 'hist':
df[plot['x']].hist(ax=ax)
ax.set_title(plot['title'])
ax.set_xlabel(plot['x'])
ax.set_ylabel(plot['y'] if plot['y'] else 'Frequency')
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
images.append(img)
plt.close(fig)
return images if len(images) == 3 else images + [Image.new('RGB', (800, 600), (255,255,255))]*(3-len(images))
except Exception as e:
error_message = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_message) # Print to console for debugging
error_image = Image.new('RGB', (800, 400), (255, 255, 255))
draw = ImageDraw.Draw(error_image)
draw.text((10, 10), error_message, fill=(255, 0, 0))
return [error_image] * 3
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# Data Analysis Dashboard")
with gr.Row():
file = gr.File(label="Upload Dataset", file_types=[".csv", ".xlsx"])
instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...")
api_key = gr.Textbox(label="Gemini API Key", type="password")
submit = gr.Button("Generate Insights", variant="primary")
output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)]
submit.click(
process_file,
inputs=[file, instructions, api_key],
outputs=output_images
)
if __name__ == "__main__":
demo.launch() |