File size: 7,764 Bytes
b7ede47
12ce912
72c5969
3c50a2d
b7ede47
 
 
 
 
 
 
 
4fc79a4
b7ede47
 
 
 
 
 
 
 
f00eea3
b7ede47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb21fe
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ede47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f00eea3
9a4fc1b
f00eea3
ec365ce
422964b
ec365ce
72c5969
 
a5f2a3b
 
72c5969
2e5c04a
a5f2a3b
 
6ac004d
 
d3510d0
2e5c04a
 
 
d3510d0
2e5c04a
a5f2a3b
 
6ac004d
 
 
a5f2a3b
72c5969
601022d
72c5969
 
 
 
 
 
 
 
b7ede47
9a4fc1b
b7ede47
 
9a4fc1b
b7ede47
 
 
 
 
 
 
 
7a74363
b7ede47
 
7a74363
b7ede47
 
 
 
 
 
 
 
 
 
 
 
 
05370c5
b7ede47
 
 
 
 
 
ceb21fe
 
b7ede47
 
 
f00eea3
 
b7ede47
f00eea3
ceb21fe
 
 
 
 
b7ede47
ceb21fe
 
 
 
b7ede47
ceb21fe
 
 
6013c50
ceb21fe
 
 
 
 
05370c5
b7ede47
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import base64
import io
import ast
import traceback
from threading import Thread

import dash
from dash import dcc, html, Input, Output, State
import dash_bootstrap_components as dbc
import pandas as pd
import plotly.graph_objs as go
import google.generativeai as genai

# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

# Layout
app.layout = dbc.Container([
    html.H1("Data Analysis Dashboard", className="my-4"),
    dbc.Card([
        dbc.CardBody([
            dbc.Input(id="api-key", placeholder="Enter your Gemini API key", type="password", className="mb-3"),
            dcc.Upload(
                id='upload-data',
                children=html.Div([
                    'Drag and Drop or ',
                    html.A('Select Files')
                ]),
                style={
                    'width': '100%',
                    'height': '60px',
                    'lineHeight': '60px',
                    'borderWidth': '1px',
                    'borderStyle': 'dashed',
                    'borderRadius': '5px',
                    'textAlign': 'center',
                    'margin': '10px'
                },
                multiple=False
            ),
            dbc.Input(id="instructions", placeholder="Describe the analysis you want...", type="text"),
            dbc.Button("Generate Insights", id="submit-button", color="primary", className="mt-3"),
        ])
    ], className="mb-4"),
    html.Div(id="error-message", className="text-danger mb-3"),
    dcc.Loading(
        id="loading-visualizations",
        type="default",
        children=[
            dbc.Card([
                dbc.CardBody([
                    dcc.Graph(id='visualization-1'),
                    dcc.Graph(id='visualization-2'),
                    dcc.Graph(id='visualization-3'),
                ])
            ])
        ]
    )
], fluid=True)

def parse_contents(contents, filename):
    content_type, content_string = contents.split(',')
    decoded = base64.b64decode(content_string)
    try:
        if 'csv' in filename:
            df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
        elif 'xls' in filename:
            df = pd.read_excel(io.BytesIO(decoded))
        else:
            return None
        return df
    except Exception as e:
        print(e)
        return None

def process_data(df, instructions, api_key):
    try:
        # Initialize Gemini with provided API key
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
        
        # Generate visualization code
        response = model.generate_content(f"""
            Analyze the following dataset and instructions:
            
            Data columns: {list(df.columns)}
            Data shape: {df.shape}
            Instructions: {instructions}
            
            Based on this, create 3 appropriate visualizations that provide meaningful insights. For each visualization:
            1. Choose the most suitable plot type (bar, line, scatter, hist, pie, heatmap)
            2. Determine appropriate data aggregation (e.g., top 5 categories, yearly averages)
            3. Select relevant columns for x-axis, y-axis, and any additional dimensions (color, size)
            4. Provide a clear, concise title that explains the insight
            Consider data density and choose visualizations that simplify and clarify the information.
            Limit the number of data points displayed to ensure readability (e.g., top 5, top 10, yearly).
            
            Return your response as a Python list of dictionaries:
            [
                {{"title": "...", "plot_type": "...", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}},
                {{"title": "...", "plot_type": "...", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}},
                {{"title": "...", "plot_type": "...", "x": "...", "y": "...", "agg_func": "...", "top_n": ..., "additional": {{"color": "...", "size": "..."}}}}
            ]
        """)

        # Extract code block safely
        code_block = response.text
        if '```python' in code_block:
            code_block = code_block.split('```python')[1].split('```')[0].strip()
        elif '```' in code_block:
            code_block = code_block.split('```')[1].strip()
        
        plots = ast.literal_eval(code_block)
        return plots
    except Exception as e:
        print(f"Error in process_data: {str(e)}")
        return None

def generate_plot(df, plot_info):
    plot_df = df.copy()
    if plot_info['agg_func'] == 'sum':
        plot_df = plot_df.groupby(plot_info['x'])[plot_info['y']].sum().reset_index()
    elif plot_info['agg_func'] == 'mean':
        plot_df = plot_df.groupby(plot_info['x'])[plot_info['y']].mean().reset_index()
    elif plot_info['agg_func'] == 'count':
        plot_df = plot_df.groupby(plot_info['x']).size().reset_index(name=plot_info['y'])
    
    if 'top_n' in plot_info and plot_info['top_n']:
        plot_df = plot_df.nlargest(plot_info['top_n'], plot_info['y'])
    
    if plot_info['plot_type'] == 'bar':
        fig = go.Figure(go.Bar(x=plot_df[plot_info['x']], y=plot_df[plot_info['y']]))
    elif plot_info['plot_type'] == 'line':
        fig = go.Figure(go.Scatter(x=plot_df[plot_info['x']], y=plot_df[plot_info['y']], mode='lines'))
    elif plot_info['plot_type'] == 'scatter':
        fig = go.Figure(go.Scatter(x=plot_df[plot_info['x']], y=plot_df[plot_info['y']], mode='markers'))
    elif plot_info['plot_type'] == 'hist':
        fig = go.Figure(go.Histogram(x=plot_df[plot_info['x']]))
    elif plot_info['plot_type'] == 'pie':
        fig = go.Figure(go.Pie(labels=plot_df[plot_info['x']], values=plot_df[plot_info['y']]))
    elif plot_info['plot_type'] == 'heatmap':
        pivot_df = plot_df.pivot(index=plot_info['x'], columns=plot_info['additional']['color'], values=plot_info['y'])
        fig = go.Figure(go.Heatmap(z=pivot_df.values, x=pivot_df.columns, y=pivot_df.index))
    
    fig.update_layout(title=plot_info['title'], xaxis_title=plot_info['x'], yaxis_title=plot_info['y'])
    return fig

@app.callback(
    [Output('visualization-1', 'figure'),
     Output('visualization-2', 'figure'),
     Output('visualization-3', 'figure'),
     Output('error-message', 'children')],
    [Input('submit-button', 'n_clicks')],
    [State('upload-data', 'contents'),
     State('upload-data', 'filename'),
     State('instructions', 'value'),
     State('api-key', 'value')]
)
def update_output(n_clicks, contents, filename, instructions, api_key):
    if n_clicks is None or contents is None:
        return dash.no_update, dash.no_update, dash.no_update, ""
    
    if not api_key:
        return dash.no_update, dash.no_update, dash.no_update, "Please enter a valid API key."

    try:
        df = parse_contents(contents, filename)
        if df is None:
            return dash.no_update, dash.no_update, dash.no_update, "Unable to parse the uploaded file."

        plots = process_data(df, instructions, api_key)
        if plots is None or len(plots) < 3:
            return dash.no_update, dash.no_update, dash.no_update, "Unable to generate visualizations. Please check your instructions and try again."

        figures = [generate_plot(df, plot_info) for plot_info in plots[:3]]
        return figures[0], figures[1], figures[2], ""
    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        return dash.no_update, dash.no_update, dash.no_update, error_message

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0', port=7860, threaded=True)