import gradio as gr import pandas as pd import matplotlib.pyplot as plt import io import google.generativeai as genai from PIL import Image, ImageDraw, ImageFont import ast import re import traceback def process_file(api_key, file, instructions): # Function implementation goes here pass # Add proper indentation for actual implementation def sanitize_code(code_block, columns): # Function implementation goes here pass # Add proper indentation for actual implementation def execute_plot_code(code, df): # Function implementation goes here pass # Add proper indentation for actual implementation def generate_error_image(message): """Create error indication image with message""" try: img = Image.new('RGB', (1920, 1080), color=(255, 255, 255)) draw = ImageDraw.Draw(img) # Use default font font = ImageFont.load_default() # Calculate text position text_width, text_height = draw.textsize(message, font=font) x = (1920 - text_width) / 2 y = (1080 - text_height) / 2 # Draw message draw.text((x, y), message, font=font, fill=(255, 0, 0)) return img except Exception as e: # Fallback if text rendering fails return Image.new('RGB', (1920, 1080), color=(255, 255, 255)) # Gradio interface with gr.Blocks(theme=gr.themes.Default(spacing_size="lg")) as demo: gr.Markdown("# Professional Data Visualizer") with gr.Row(): api_key = gr.Textbox(label="Gemini API Key", type="password") file = gr.File(label="Upload Data File", file_types=[".csv", ".xlsx"]) instructions = gr.Textbox(label="Visualization Instructions") submit = gr.Button("Generate Insights", variant="primary") with gr.Row(): outputs = [gr.Image(label=f"Visualization {i+1}", width=600) for i in range(3)] submit.click( process_file, inputs=[api_key, file, instructions], outputs=outputs ) if __name__ == "__main__": demo.launch()