import gradio as gr import pandas as pd import matplotlib.pyplot as plt import io import base64 import google.generativeai as genai def process_file(api_key, file, instructions): # Set up Gemini API genai.configure(api_key=api_key) model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') # Read the file if file.name.endswith('.csv'): df = pd.read_csv(file.name) else: df = pd.read_excel(file.name) # Analyze data and get visualization suggestions from Gemini data_description = df.describe().to_string() columns_info = "\n".join([f"{col}: {df[col].dtype}" for col in df.columns]) prompt = f""" Given this dataset: Columns and types: {columns_info} Data summary: {data_description} User instructions: {instructions if instructions else 'No specific instructions provided.'} Generate Python code for 3 different visualizations using matplotlib. Each visualization should be unique and provide insights into the data. Do not include any explanations or descriptions, only the Python code for each visualization. Format your response as: ```python # Visualization 1 # Your code here # Visualization 2 # Your code here # Visualization 3 # Your code here ``` """ response = model.generate_content(prompt) code = response.text.strip() # Extract code from markdown code block if present if "```python" in code and "```" in code: code = code.split("```python")[1].split("```")[0].strip() visualizations = [] for i, viz_code in enumerate(code.split("# Visualization")[1:4], 1): plt.figure(figsize=(10, 6)) try: exec(viz_code, {'df': df, 'plt': plt}) plt.title(f"Visualization {i}") # Save the plot to a BytesIO object buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) img_str = base64.b64encode(buf.getvalue()).decode() plt.close() visualizations.append(f"data:image/png;base64,{img_str}") except Exception as e: print(f"Error in visualization {i}: {str(e)}") visualizations.append(None) # Ensure we always return 3 visualizations while len(visualizations) < 3: visualizations.append(None) return visualizations # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Data Visualization with Gemini") api_key = gr.Textbox(label="Enter Gemini API Key", type="password") file = gr.File(label="Upload Excel or CSV file") instructions = gr.Textbox(label="Optional visualization instructions") submit = gr.Button("Generate Visualizations") with gr.Row(): output1 = gr.Image(label="Visualization 1") output2 = gr.Image(label="Visualization 2") output3 = gr.Image(label="Visualization 3") submit.click( fn=process_file, inputs=[api_key, file, instructions], outputs=[output1, output2, output3], show_progress=True, ) demo.launch()