import gradio as gr import pandas as pd import matplotlib.pyplot as plt import io from PIL import Image, ImageDraw import google.generativeai as genai import traceback def process_file(file, instructions, api_key): try: # Initialize Gemini genai.configure(api_key=api_key) model = genai.GenerativeModel('gemini-pro') # Read uploaded file file_path = file.name df = pd.read_csv(file_path) if file_path.endswith('.csv') else pd.read_excel(file_path) # Generate visualization code using Gemini prompt = f""" Analyze the following dataset and instructions: Data columns: {list(df.columns)} Instructions: {instructions} Based on this, create 3 appropriate visualizations. For each visualization, provide: 1. A title 2. The most suitable plot type (choose from: bar, line, scatter, hist) 3. The column to use for the x-axis 4. The column to use for the y-axis (use None for histograms) Return your response as a Python list of tuples: [ ("Title 1", "plot_type1", "x_column1", "y_column1"), ("Title 2", "plot_type2", "x_column2", "y_column2"), ("Title 3", "plot_type3", "x_column3", "y_column3") ] """ response = model.generate_content(prompt) plots = eval(response.text) # Generate visualizations images = [] for plot in plots: fig, ax = plt.subplots(figsize=(10, 6)) title, plot_type, x, y = plot if plot_type == 'bar': df.plot(kind='bar', x=x, y=y, ax=ax) elif plot_type == 'line': df.plot(kind='line', x=x, y=y, ax=ax) elif plot_type == 'scatter': df.plot(kind='scatter', x=x, y=y, ax=ax) elif plot_type == 'hist': df[x].hist(ax=ax) ax.set_title(title) ax.set_xlabel(x) ax.set_ylabel(y if y else 'Frequency') plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) img = Image.open(buf) images.append(img) plt.close(fig) return images if len(images) == 3 else images + [Image.new('RGB', (800, 600), (255,255,255))]*(3-len(images)) except Exception as e: error_message = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" print(error_message) # Print to console for debugging error_image = Image.new('RGB', (800, 400), (255, 255, 255)) draw = ImageDraw.Draw(error_image) draw.text((10, 10), error_message, fill=(255, 0, 0)) return [error_image] * 3 with gr.Blocks(theme=gr.themes.Default()) as demo: gr.Markdown("# Data Analysis Dashboard") with gr.Row(): file = gr.File(label="Upload Dataset", file_types=[".csv", ".xlsx"]) instructions = gr.Textbox(label="Analysis Instructions", placeholder="Describe the analysis you want...") api_key = gr.Textbox(label="Gemini API Key", type="password") submit = gr.Button("Generate Insights", variant="primary") output_images = [gr.Image(label=f"Visualization {i+1}") for i in range(3)] submit.click( process_file, inputs=[file, instructions, api_key], outputs=output_images ) if __name__ == "__main__": demo.launch()