File size: 48,650 Bytes
fca261a
2964e69
fca261a
9793015
 
2964e69
9793015
 
 
4153999
 
a41f579
 
6e510f6
2964e69
 
 
 
 
6e510f6
2964e69
 
6dc9c9e
9793015
61269de
 
 
 
 
 
 
 
 
6e510f6
61269de
 
 
 
2964e69
 
61269de
 
 
 
 
2964e69
 
 
61269de
6e510f6
2964e69
5c40bf1
6dc9c9e
2964e69
 
fca261a
ea0faa4
2964e69
4153999
2964e69
61269de
2964e69
 
 
 
 
 
6e510f6
2964e69
 
 
 
 
 
 
 
 
 
 
61269de
2964e69
fca261a
615e314
2964e69
615e314
61269de
615e314
2964e69
615e314
 
61269de
 
 
 
 
 
 
2964e69
615e314
2964e69
 
615e314
61269de
615e314
 
6e510f6
 
615e314
 
61269de
615e314
 
 
 
 
 
2964e69
 
 
61269de
 
 
 
 
2964e69
 
 
 
9793015
 
2964e69
9793015
2964e69
 
 
6e510f6
2964e69
 
 
61269de
2964e69
 
61269de
2964e69
61269de
2964e69
61269de
6e510f6
61269de
 
 
2964e69
 
61269de
2964e69
 
 
61269de
 
6e510f6
2964e69
 
 
 
 
 
 
 
 
61269de
6e510f6
2964e69
 
 
 
61269de
615e314
61269de
 
6e510f6
61269de
2964e69
61269de
 
 
 
 
2964e69
61269de
2964e69
615e314
2964e69
 
 
 
 
 
61269de
6e510f6
2964e69
 
61269de
2964e69
 
61269de
2964e69
 
5c40bf1
61269de
2964e69
 
 
 
 
615e314
61269de
 
 
 
 
615e314
2964e69
615e314
 
61269de
2964e69
 
 
 
61269de
 
 
2964e69
 
5c40bf1
 
 
 
615e314
5c40bf1
 
615e314
5c40bf1
 
2964e69
61269de
 
 
2964e69
61269de
5c40bf1
 
 
615e314
61269de
a41f579
ea0faa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9793015
2964e69
 
 
 
 
 
 
 
 
9793015
615e314
6e510f6
615e314
 
2964e69
615e314
 
2964e69
 
 
ea0faa4
86821c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0faa4
 
 
 
 
 
 
 
86821c0
ea0faa4
86821c0
 
 
 
 
 
 
 
 
 
 
 
ea0faa4
86821c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964e69
 
 
f93be35
2964e69
615e314
 
f93be35
2964e69
615e314
61269de
 
 
615e314
61269de
 
615e314
61269de
 
615e314
61269de
 
615e314
61269de
 
 
 
615e314
61269de
 
 
 
615e314
61269de
 
fca261a
ea0faa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615e314
fca261a
ea0faa4
2964e69
61269de
ea0faa4
2964e69
61269de
2964e69
 
ea0faa4
6e510f6
 
ea0faa4
 
 
 
 
 
 
 
 
 
615e314
ea0faa4
 
 
615e314
 
 
 
 
6e510f6
615e314
61269de
ea0faa4
61269de
 
 
ea0faa4
615e314
 
 
2964e69
615e314
 
6e510f6
615e314
 
6e510f6
 
61269de
615e314
 
 
 
 
 
 
 
ea0faa4
6e510f6
615e314
ea0faa4
615e314
 
ea0faa4
615e314
6e510f6
ea0faa4
6e510f6
615e314
 
 
 
 
 
 
 
 
 
 
 
 
6e510f6
615e314
 
 
 
 
 
 
 
 
 
6e510f6
615e314
ea0faa4
615e314
 
ea0faa4
615e314
6e510f6
ea0faa4
6e510f6
615e314
6e510f6
615e314
 
 
 
 
 
 
 
6e510f6
ea0faa4
615e314
 
6e510f6
615e314
ea0faa4
6e510f6
615e314
ea0faa4
615e314
 
 
ea0faa4
615e314
 
ea0faa4
615e314
 
ea0faa4
615e314
 
 
 
6e510f6
615e314
 
61269de
615e314
6e510f6
2964e69
ea0faa4
2964e69
 
ea0faa4
2964e69
6e510f6
2964e69
 
86821c0
 
2964e69
615e314
86821c0
2964e69
25d44ed
ea0faa4
 
 
 
25d44ed
 
 
 
2964e69
 
6e510f6
ea0faa4
6e510f6
615e314
ea0faa4
 
2964e69
6e510f6
2964e69
 
6e510f6
615e314
ea0faa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964e69
 
615e314
2964e69
61269de
2964e69
ea0faa4
2964e69
 
ea0faa4
2964e69
 
61269de
2964e69
86821c0
 
 
ea0faa4
86821c0
 
 
 
ea0faa4
86821c0
 
ea0faa4
 
 
 
 
 
 
 
 
 
 
86821c0
 
 
 
 
 
2964e69
 
 
 
ea0faa4
2964e69
 
 
ea0faa4
2964e69
6e510f6
86821c0
2964e69
 
7c41d0c
9793015
 
2964e69
 
7c41d0c
2964e69
5c40bf1
2964e69
9793015
2964e69
 
61269de
6e510f6
615e314
61269de
2964e69
 
 
615e314
 
 
2964e69
 
6e510f6
2964e69
9793015
2964e69
 
 
 
9793015
2964e69
5c40bf1
2964e69
9793015
2964e69
 
61269de
6e510f6
61269de
 
2964e69
 
 
615e314
 
 
a41f579
2964e69
6e510f6
fca261a
9793015
2964e69
 
 
 
9793015
2964e69
5c40bf1
615e314
2964e69
6e510f6
615e314
2964e69
615e314
 
6e510f6
615e314
2964e69
 
615e314
2964e69
 
ea0faa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964e69
 
25d44ed
9e890d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
import dash
from dash import dcc, html, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
import os
import tempfile
import base64
import openai
import docx
from datetime import datetime
import threading
import time
import google.generativeai as genai
from anthropic import Anthropic
import requests
import uuid
import flask
import shutil
import logging
from collections import defaultdict
from moviepy import *

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
    logging.warning("OPENAI_API_KEY not set. Transcription will fail.")

google_api_key = os.getenv("GOOGLE_API_KEY")
if google_api_key:
    try:
        genai.configure(api_key=google_api_key)
    except Exception as e:
        logging.error(f"Failed to configure Google Gemini: {e}")
        genai = None
else:
    genai = None
    logging.warning("GOOGLE_API_KEY not set. Gemini model will not be available.")

anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
if anthropic_api_key:
    try:
        anthropic = Anthropic(api_key=anthropic_api_key)
    except Exception as e:
        logging.error(f"Failed to initialize Anthropic client: {e}")
        anthropic = None
else:
    anthropic = None
    logging.warning("ANTHROPIC_API_KEY not set. Claude model will not be available.")

grok_api_key = os.getenv("GROK_API_KEY")
if not grok_api_key:
    logging.warning("GROK_API_KEY not set. Groq model will not be available.")

server = flask.Flask(__name__)
app = dash.Dash(__name__, server=server, external_stylesheets=[dbc.themes.BOOTSTRAP], suppress_callback_exceptions=True)

session_data = defaultdict(lambda: {"audio_path": None, "transcript": None, "minutes": None, "diarized": None, "temp_dir": None, "original_filename": None})
session_locks = defaultdict(threading.Lock)

def get_session_dir(session_id):
    if session_data[session_id]["temp_dir"] is None or not os.path.exists(session_data[session_id]["temp_dir"]):
        session_specific_dir = tempfile.mkdtemp(prefix=f"session_{session_id}_")
        session_data[session_id]["temp_dir"] = session_specific_dir
        logging.info(f"Created temp directory for session {session_id}: {session_specific_dir}")
    return session_data[session_id]["temp_dir"]

def cleanup_session(session_id):
    with session_locks[session_id]:
        logging.info(f"Cleaning up session: {session_id}")
        session_dir = session_data[session_id].get("temp_dir")
        if session_dir and os.path.exists(session_dir):
            try:
                shutil.rmtree(session_dir)
                logging.info(f"Removed temp directory: {session_dir}")
            except Exception as e:
                logging.error(f"Error removing directory {session_dir}: {e}")
        if session_id in session_data:
            del session_data[session_id]
        if session_id in session_locks:
             del session_locks[session_id]
        logging.info(f"Session data cleared for {session_id}")

def save_base64_data(content_string, file_path):
    try:
        logging.info(f"Decoding base64 data for {file_path}")
        content_type, content_string = content_string.split(',')
        data_bytes = base64.b64decode(content_string)
        with open(file_path, 'wb') as f:
            f.write(data_bytes)
        logging.info(f"Saved uploaded data to {file_path}")
        return file_path
    except ValueError as e:
        logging.error(f"Error splitting content string: {e}. String might not be in 'type,base64_data' format.")
        return None
    except base64.binascii.Error as e:
         logging.error(f"Error decoding base64: {e}")
         return None
    except Exception as e:
        logging.error(f"Error saving base64 data: {e}")
        return None

def extract_audio_from_video(video_path, audio_output_path):
    try:
        logging.info(f"Extracting audio from {video_path} to {audio_output_path}")
        video = VideoFileClip(video_path)
        video.audio.write_audiofile(audio_output_path, codec='mp3')
        video.close()
        logging.info(f"Successfully extracted audio to {audio_output_path}")
        return audio_output_path
    except Exception as e:
        logging.error(f"Error extracting audio from {video_path}: {e}")
        if os.path.exists(audio_output_path):
            os.remove(audio_output_path)
        if 'video' in locals() and hasattr(video, 'close'):
            video.close()
        return None

def transcribe_audio(file_path):
    logging.info(f"Starting transcription for {file_path}")
    if not openai.api_key:
        return "Error: OpenAI API key not configured."
    if not os.path.exists(file_path):
        logging.error(f"Transcription failed: File not found at {file_path}")
        return "Error: Audio file not found for transcription."
    try:
        with open(file_path, "rb") as audio_file:
            client = openai.OpenAI()
            transcript = client.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file,
                response_format="text"
            )
            logging.info(f"Transcription successful for {file_path}")
            if isinstance(transcript, str):
                 return transcript
            elif hasattr(transcript, 'text'):
                 return transcript.text
            else:
                 logging.error(f"Unexpected transcription response format: {type(transcript)}")
                 return "Error: Could not extract transcript text from OpenAI response."
    except openai.BadRequestError as e:
        logging.error(f"OpenAI API Bad Request Error (possibly file format/size issue): {e}")
        error_message = f"Error during transcription: {e}"
        if "Invalid file format" in str(e):
             error_message = "Error: Invalid audio file format. Supported formats include mp3, mp4, mpeg, mpga, m4a, wav, and webm."
        elif "maximum file size" in str(e):
             error_message = "Error: Audio file exceeds the maximum size limit (25MB) for direct upload."
        return error_message
    except openai.AuthenticationError:
        logging.error("OpenAI API Authentication Error: Check your API key.")
        return "Error: OpenAI API Authentication Failed. Check API Key."
    except Exception as e:
        logging.error(f"An unexpected error occurred during transcription: {e}")
        return f"Error during transcription: An unexpected error occurred."

def generate_minutes_ai(transcript, model_name, session_id):
    logging.info(f"Generating minutes using {model_name} for session {session_id}")
    if not transcript or "Error:" in transcript:
        return "Error: Cannot generate minutes from invalid or missing transcript."
    with session_locks[session_id]:
        try:
            if model_name == 'openai':
                if not openai.api_key: return "Error: OpenAI API key not configured."
                client = openai.OpenAI()
                response = client.chat.completions.create(
                    model="gpt-3.5-turbo",
                    messages=[
                        {"role": "system", "content": "You are a professional assistant tasked with creating structured meeting minutes, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made."},
                        {"role": "user", "content": f"Generate detailed meeting minutes from this transcript:\n\n{transcript}"}
                    ],
                    timeout=120
                )
                logging.info(f"OpenAI minutes generation successful for session {session_id}")
                return response.choices[0].message.content
            elif model_name == 'gemini':
                if not genai: return "Error: Google Gemini API not configured or key missing."
                model = genai.GenerativeModel('gemini-1.5-flash-latest')
                response = model.generate_content(
                    f"Generate detailed meeting minutes from this transcript, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made:\n\n{transcript}",
                    request_options={'timeout': 120}
                )
                logging.info(f"Gemini minutes generation successful for session {session_id}")
                if response.parts:
                     return response.text
                else:
                     logging.warning(f"Gemini response blocked or empty for session {session_id}. Reason: {response.prompt_feedback}")
                     return f"Error: Gemini response blocked or empty. Reason: {response.prompt_feedback}"
            elif model_name == 'anthropic':
                 if not anthropic: return "Error: Anthropic API not configured or key missing."
                 response = anthropic.messages.create(
                     model="claude-3-5-haiku-20241022",
                     max_tokens=2000,
                     messages=[
                         {
                             "role": "user",
                             "content": f"Generate detailed meeting minutes from this transcript, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made:\n\n{transcript}"
                         }
                     ],
                     timeout=120
                 )
                 logging.info(f"Anthropic minutes generation successful for session {session_id}")
                 if response.content and isinstance(response.content, list) and hasattr(response.content[0], 'text'):
                     return response.content[0].text
                 else:
                     logging.error(f"Could not extract content from Anthropic response: {response}")
                     return "Error: Could not extract content from Anthropic response."
            elif model_name == 'grok':
                if not grok_api_key: return "Error: Grok API key (via Groq) not configured."
                groq_url = "https://api.groq.com/openai/v1/chat/completions"
                headers = {
                    "Authorization": f"Bearer {grok_api_key}",
                    "Content-Type": "application/json"
                }
                data = {
                     "model": "grok-3-mini-fast-beta",
                     "messages": [
                        {"role": "system", "content": "You are a professional assistant tasked with creating structured meeting minutes, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made."},
                        {"role": "user", "content": f"Generate detailed meeting minutes from this transcript:\n\n{transcript}"}
                        ],
                     "max_tokens": 2000,
                     "temperature": 0.7
                }
                response = requests.post(groq_url, headers=headers, json=data, timeout=120)
                response.raise_for_status()
                logging.info(f"Groq ({data['model']}) minutes generation successful for session {session_id}")
                return response.json()["choices"][0]["message"]["content"]
            else:
                logging.warning(f"Invalid model selection: {model_name}")
                return "Error: Invalid model selection"
        except requests.exceptions.Timeout:
             logging.error(f"API Request Timeout for {model_name} on session {session_id}")
             return f"Error: Request to {model_name} API timed out."
        except requests.exceptions.RequestException as e:
             logging.error(f"API Request Error for {model_name}: {e}")
             if model_name == 'grok' and e.response is not None:
                 if e.response.status_code == 429:
                     logging.warning(f"Groq Rate Limit hit for session {session_id}")
                     return "Error: Groq API rate limit exceeded. Please try again later."
                 elif e.response.status_code == 404:
                      logging.error(f"Model {data['model']} not found via Groq API. Status: {e.response.status_code}. Response: {e.response.text}")
                      return f"Error: Model '{data['model']}' not found or accessible via Groq API. Please check model availability."
                 elif e.response.status_code >= 400:
                      logging.error(f"Groq API error. Status: {e.response.status_code}. Response: {e.response.text}")
                      return f"Error communicating with Groq API: {e.response.status_code}"
             return f"Error communicating with {model_name} API: {e}"
        except (genai.types.generation_types.BlockedPromptException, genai.types.generation_types.StopCandidateException) as e:
            logging.error(f"Gemini content generation issue for session {session_id}: {e}")
            return f"Error: Gemini generation failed or was blocked. {e}"
        except Exception as e:
            logging.error(f"Error generating minutes with {model_name} for session {session_id}: {e}", exc_info=True)
            if model_name == 'anthropic' and 'Could not find model' in str(e):
                 return f"Error: Anthropic model '{response.model if 'response' in locals() else 'claude-3-5-haiku-20241022'}' not found or accessible. Check model name and API key permissions."
            elif model_name == 'gemini' and 'model not found' in str(e).lower():
                 return f"Error: Gemini model '{model.model_name if 'model' in locals() else 'gemini-1.5-flash-latest'}' not found or accessible. Check model name and API key permissions."
            return f"Error generating minutes using {model_name}: An unexpected error occurred."

def diarize_transcript_ai(transcript, model_name, session_id):
    logging.info(f"Generating diarized transcript using {model_name} for session {session_id}")
    if not transcript or "Error:" in transcript:
        return "Error: Cannot diarize invalid or missing transcript."
    diarization_prompt = (
        "Analyze the given transcript to identify distinct speakers without labeled identifiers. "
        "Create unique speaker embeddings based on individual speech patterns, vocabulary choices, and linguistic styles. "
        "Examine the context and content of each utterance to detect likely speaker changes. "
        "Recognize typical conversation structures and turn-taking behaviors to differentiate between speakers. "
        "Finally, use topic modeling to identify shifts in subject matter and areas of expertise, associating certain topics with specific speakers. "
        "Based on this analysis, assign speaker labels (e.g., Speaker 1, Speaker 2) to each utterance in the transcript."
        "\n\nTranscript:\n" + transcript
    )
    with session_locks[session_id]:
        try:
            if model_name == 'openai':
                if not openai.api_key: return "Error: OpenAI API key not configured."
                client = openai.OpenAI()
                response = client.chat.completions.create(
                    model="gpt-3.5-turbo",
                    messages=[
                        {"role": "system", "content": "You are a professional assistant skilled in speaker diarization and transcript formatting."},
                        {"role": "user", "content": diarization_prompt}
                    ],
                    timeout=120
                )
                logging.info(f"OpenAI diarization successful for session {session_id}")
                return response.choices[0].message.content
            elif model_name == 'gemini':
                if not genai: return "Error: Google Gemini API not configured or key missing."
                model = genai.GenerativeModel('gemini-1.5-flash-latest')
                response = model.generate_content(
                    diarization_prompt,
                    request_options={'timeout': 120}
                )
                logging.info(f"Gemini diarization successful for session {session_id}")
                if response.parts:
                    return response.text
                else:
                    logging.warning(f"Gemini diarization response blocked or empty for session {session_id}. Reason: {response.prompt_feedback}")
                    return f"Error: Gemini response blocked or empty. Reason: {response.prompt_feedback}"
            elif model_name == 'anthropic':
                if not anthropic: return "Error: Anthropic API not configured or key missing."
                response = anthropic.messages.create(
                    model="claude-3-5-haiku-20241022",
                    max_tokens=2000,
                    messages=[
                        {
                            "role": "user",
                            "content": diarization_prompt
                        }
                    ],
                    timeout=120
                )
                logging.info(f"Anthropic diarization successful for session {session_id}")
                if response.content and isinstance(response.content, list) and hasattr(response.content[0], 'text'):
                    return response.content[0].text
                else:
                    logging.error(f"Could not extract content from Anthropic diarization response: {response}")
                    return "Error: Could not extract content from Anthropic response."
            elif model_name == 'grok':
                if not grok_api_key: return "Error: Grok API key (via Groq) not configured."
                groq_url = "https://api.groq.com/openai/v1/chat/completions"
                headers = {
                    "Authorization": f"Bearer {grok_api_key}",
                    "Content-Type": "application/json"
                }
                data = {
                    "model": "grok-3-mini-fast-beta",
                    "messages": [
                        {"role": "system", "content": "You are a professional assistant skilled in speaker diarization and transcript formatting."},
                        {"role": "user", "content": diarization_prompt}
                    ],
                    "max_tokens": 2000,
                    "temperature": 0.7
                }
                response = requests.post(groq_url, headers=headers, json=data, timeout=120)
                response.raise_for_status()
                logging.info(f"Groq ({data['model']}) diarization successful for session {session_id}")
                return response.json()["choices"][0]["message"]["content"]
            else:
                logging.warning(f"Invalid model selection for diarization: {model_name}")
                return "Error: Invalid model selection"
        except Exception as e:
            logging.error(f"Error during diarization with {model_name} for session {session_id}: {e}", exc_info=True)
            return f"Error generating diarized transcript using {model_name}: An unexpected error occurred."

def save_to_word(content, filename):
    try:
        doc = docx.Document()
        doc.add_paragraph(content)
        doc.save(filename)
        logging.info(f"Saved content to Word document: {filename}")
        return filename
    except Exception as e:
        logging.error(f"Error saving to Word document {filename}: {e}")
        return None

ALLOWED_AUDIO_EXTENSIONS = ['.mp3', '.wav', '.m4a', '.webm', '.mp4', '.mpeg', '.mpga']
ALLOWED_VIDEO_EXTENSIONS = ['.mp4', '.mov', '.avi', '.webm', '.mkv', '.flv']
ALLOWED_UPLOAD_EXTENSIONS = ALLOWED_AUDIO_EXTENSIONS + ALLOWED_VIDEO_EXTENSIONS

app.layout = dbc.Container([
    dcc.Store(id='session-id', storage_type='local'),
    dcc.Store(id='session-state-trigger'),
    dcc.Download(id="download-transcript"),
    dcc.Download(id="download-audio"),
    dcc.Download(id="download-minutes"),
    dcc.Download(id="download-diarized"),
    dbc.Row([
        dbc.Col(dbc.Card(
            dbc.CardBody([
                html.H4("Controls", className="card-title"),
                html.Div("Upload meeting audio or video file:"),
                dcc.Upload(
                    id='audio-uploader',
                    children=html.Div([
                        'Drag and Drop or ',
                        html.A('Select Audio/Video File')
                    ]),
                    style={
                        'width': '100%',
                        'height': '60px',
                        'lineHeight': '60px',
                        'borderWidth': '1px',
                        'borderStyle': 'dashed',
                        'borderRadius': '5px',
                        'textAlign': 'center',
                        'margin': '10px 0'
                    },
                    multiple=False,
                    accept='audio/*,video/*'
                ),
                html.Div(id='upload-status', children='Status: Ready to Upload', className="mt-2"),
                html.H5("Select AI Model", className="mt-4"),
                dcc.Dropdown(
                    id='model-selection',
                    options=[
                        {'label': 'OpenAI GPT-3.5 Turbo', 'value': 'openai', 'disabled': not openai.api_key},
                        {'label': 'Google Gemini 1.5 Flash', 'value': 'gemini', 'disabled': not genai},
                        {'label': 'Anthropic Claude 3.5 Haiku', 'value': 'anthropic', 'disabled': not anthropic},
                        {'label': 'Grok 3 Mini', 'value': 'grok', 'disabled': not grok_api_key}
                    ],
                    value='openai' if openai.api_key else ('gemini' if genai else ('anthropic' if anthropic else ('grok' if grok_api_key else None))),
                    clearable=False,
                    className="mt-2",
                    disabled=not (openai.api_key or genai or anthropic or grok_api_key)
                ),
                dbc.Button("Generate Minutes", id="minutes-btn", color="secondary", className="mt-4 w-100", disabled=True),
                dbc.Button("Diarize Transcript", id="diarize-btn", color="secondary", className="mt-2 w-100", disabled=True),
                html.H5("Downloads", className="mt-4"),
                dbc.Button("Download Transcript (.docx)", id="download-transcript-btn", color="info", className="w-100 mb-2", disabled=True),
                dbc.Button("Download Minutes (.docx)", id="download-minutes-btn", color="info", className="w-100 mb-2", disabled=True),
                dbc.Button("Download Processed Audio", id="download-audio-btn", color="info", className="w-100 mb-2", disabled=True),
                dbc.Button("Download Diarized Transcript (.docx)", id="download-diarized-btn", color="info", className="w-100 mb-2", disabled=True),
                dbc.Button("Delete Session Data", id="delete-btn", color="warning", className="mt-4 w-100", disabled=True),
            ]),
            style={'height': '80vh', 'overflow-y': 'auto'}
        ), width=12, lg=4),
        dbc.Col(dbc.Card(
             dbc.CardBody([
                dcc.Loading(
                    id="loading",
                    type="default",
                    parent_style={'position': 'relative', 'height': '100%'},
                    style={'position': 'absolute', 'top': '50%', 'left': '50%', 'transform': 'translate(-50%, -50%)', 'zIndex':'1000'},
                    children=[
                         html.Div([
                            html.H4("Output", className="card-title"),
                            html.Div(id="status", children="Status: Idle", className="mb-2"),
                            html.H5("Transcript / Minutes / Diarization"),
                            html.Div(id="transcript-preview", style={
                                "height": "400px",
                                "overflow-y": "scroll",
                                "border": "1px solid #ccc",
                                "padding": "10px",
                                "white-space": "pre-wrap",
                                "word-wrap": "break-word",
                                "background-color": "#f9f9f9"
                            }),
                         ])
                    ]
                 ),
                 html.Div(id="loading-output", style={"height": "0px", "visibility": "hidden"}),
            ]),
            style={'height': '80vh', 'overflow-y': 'auto', 'position': 'relative'}
        ), width=12, lg=8),
    ])
], fluid=True)

@app.callback(
    Output('session-id', 'data'),
    Input('session-id', 'data'),
    prevent_initial_call=False
)
def manage_session_id(existing_session_id):
    session_cookie = flask.request.cookies.get('dash-session-id')
    ctx = dash.callback_context
    final_session_id = None
    source = "none"
    if existing_session_id and not ctx.triggered:
        final_session_id = existing_session_id
        source = "store (initial)"
    elif existing_session_id and session_cookie == existing_session_id:
        final_session_id = existing_session_id
        source = "store/cookie match"
    elif session_cookie:
        final_session_id = session_cookie
        source = "cookie"
    else:
        final_session_id = str(uuid.uuid4())
        source = "new generation"
    if final_session_id not in session_data:
        logging.info(f"Initializing server-side session for ID: {final_session_id} (Source: {source})")
        get_session_dir(final_session_id)
    logging.info(f"Manage Session ID - Final ID: {final_session_id}, Source: {source}, Store Input: {existing_session_id}, Cookie Input: {session_cookie}")
    response = dash.callback_context.response
    if source == "new generation" or (session_cookie != final_session_id):
        logging.info(f"Setting session cookie for ID: {final_session_id}")
        response.set_cookie('dash-session-id', final_session_id, max_age=60*60*24*7)
    return final_session_id

@app.callback(
    [
        Output("status", "children"),
        Output("transcript-preview", "children"),
        Output("minutes-btn", "disabled"),
        Output("diarize-btn", "disabled"),
        Output("download-transcript-btn", "disabled"),
        Output("download-minutes-btn", "disabled"),
        Output("download-audio-btn", "disabled"),
        Output("download-diarized-btn", "disabled"),
        Output("delete-btn", "disabled"),
        Output("loading-output", "children"),
        Output("upload-status", "children")
    ],
    [
        Input('audio-uploader', 'contents'),
        Input("minutes-btn", "n_clicks"),
        Input("diarize-btn", "n_clicks"),
        Input("delete-btn", "n_clicks")
    ],
    [
        State("session-id", "data"),
        State("model-selection", "value"),
        State("transcript-preview", "children"),
        State('audio-uploader', 'filename')
    ],
    prevent_initial_call=True
)
def handle_actions(upload_contents, minutes_clicks, diarize_clicks, delete_clicks, session_id, selected_model, existing_preview, filename):
    if not session_id:
        logging.warning("Session ID missing in handle_actions.")
        return "Status: Error - Session ID missing", "", True, True, True, True, True, True, True, None, "Status: Error"
    ctx = dash.callback_context
    triggered_id = ctx.triggered_id if hasattr(ctx, 'triggered_id') else (ctx.triggered[0]['prop_id'].split('.')[0] if ctx.triggered else None)
    current_transcript = session_data[session_id].get("transcript", "")
    current_minutes = session_data[session_id].get("minutes", "")
    current_diarized = session_data[session_id].get("diarized", "")
    current_audio_path = session_data[session_id].get("audio_path", None)
    original_filename = session_data[session_id].get("original_filename", None)
    output_text = ""
    # Prioritize showing diarized > minutes > transcript
    if current_diarized and "Error:" not in current_diarized:
        output_text = current_diarized
    elif current_minutes and "Error:" not in current_minutes:
        output_text = current_minutes
    elif current_transcript and "Error:" not in current_transcript:
        output_text = current_transcript
    else:
        output_text = "Upload an audio or video file to begin."
    status_msg = "Status: Idle"
    if current_diarized and "Error:" not in current_diarized:
        status_msg = "Status: Session restored. Diarized transcript loaded."
    elif current_minutes and "Error:" not in current_minutes:
        status_msg = "Status: Session restored. Minutes loaded."
    elif current_transcript and "Error:" not in current_transcript:
        status_msg = "Status: Session restored. Transcript loaded. Ready for Minutes Generation."
    elif current_audio_path and os.path.exists(current_audio_path):
        status_msg = f"Status: Session restored. Processed audio loaded ({os.path.basename(original_filename if original_filename else 'file')}). Ready for transcription/minutes."
    elif original_filename:
         status_msg = f"Status: Session restored. Previous upload ({original_filename}) might have had issues."
    minutes_disabled = not bool(current_transcript and "Error:" not in current_transcript)
    diarize_disabled = not bool(current_transcript and "Error:" not in current_transcript)
    dl_transcript_disabled = not bool(current_transcript and "Error:" not in current_transcript)
    dl_minutes_disabled = not bool(current_minutes and "Error:" not in current_minutes)
    dl_audio_disabled = not bool(current_audio_path and os.path.exists(current_audio_path))
    dl_diarized_disabled = not bool(current_diarized and "Error:" not in current_diarized)
    delete_disabled = not bool(session_data.get(session_id, {}).get("temp_dir"))
    loading_output = None
    upload_status_msg = f"Status: {'Loaded: ' + original_filename if original_filename else 'Ready to Upload'}"
    start_time = time.time()
    if triggered_id == 'audio-uploader' and upload_contents is not None and filename is not None:
        logging.info(f"File uploaded for session {session_id}, filename: {filename}")
        session_data[session_id]["original_filename"] = filename
        upload_status_msg = f"Status: Processing Uploaded File ({filename})..."
        status_msg = "Status: Processing Upload..."
        loading_output = "Processing Upload..."
        session_dir = get_session_dir(session_id)
        _, f_ext = os.path.splitext(filename)
        f_ext_lower = f_ext.lower()
        if f_ext_lower not in ALLOWED_UPLOAD_EXTENSIONS:
             status_msg = f"Status: Error - Invalid file type ({f_ext}). Please upload audio or video."
             output_text = f"Error: Invalid file type ({f_ext}). Allowed types: {', '.join(ALLOWED_UPLOAD_EXTENSIONS)}"
             upload_status_msg = f"Status: Invalid File Type ({filename})"
             session_data[session_id]["audio_path"] = None
             session_data[session_id]["transcript"] = None
             session_data[session_id]["minutes"] = None
             session_data[session_id]["diarized"] = None
             session_data[session_id]["original_filename"] = None
             minutes_disabled = True
             diarize_disabled = True
             dl_transcript_disabled = True
             dl_minutes_disabled = True
             dl_diarized_disabled = True
             dl_audio_disabled = True
             delete_disabled = False
             return status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, None, upload_status_msg
        safe_upload_filename = f"uploaded_file{f_ext}"
        upload_file_path = os.path.join(session_dir, safe_upload_filename)
        saved_upload_path = save_base64_data(upload_contents, upload_file_path)
        if saved_upload_path:
            audio_path_for_transcription = None
            is_video = f_ext_lower in ALLOWED_VIDEO_EXTENSIONS
            if is_video:
                status_msg = "Status: Extracting audio from video..."
                upload_status_msg = "Status: Extracting Audio..."
                loading_output = "Extracting Audio..."
                extracted_audio_filename = os.path.join(session_dir, f"extracted_audio_{uuid.uuid4()}.mp3")
                extracted_audio_path = extract_audio_from_video(saved_upload_path, extracted_audio_filename)
                if extracted_audio_path:
                    audio_path_for_transcription = extracted_audio_path
                    session_data[session_id]["audio_path"] = extracted_audio_path
                    dl_audio_disabled = False
                    try:
                        os.remove(saved_upload_path)
                        logging.info(f"Removed original video file: {saved_upload_path}")
                    except Exception as e:
                        logging.warning(f"Could not remove original video file {saved_upload_path}: {e}")
                else:
                    status_msg = "Status: Error - Failed to extract audio from video."
                    output_text = "Error: Failed to extract audio from video file. Check if the file is valid."
                    upload_status_msg = f"Status: Error Extracting Audio ({filename})"
                    session_data[session_id]["audio_path"] = None
                    minutes_disabled = True
                    diarize_disabled = True
                    dl_transcript_disabled = True
                    dl_minutes_disabled = True
                    dl_diarized_disabled = True
                    dl_audio_disabled = True
                    delete_disabled = False
                    return status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, None, upload_status_msg
            else:
                audio_path_for_transcription = saved_upload_path
                session_data[session_id]["audio_path"] = saved_upload_path
                dl_audio_disabled = False
            if audio_path_for_transcription:
                logging.info(f"Audio path set for session {session_id}: {audio_path_for_transcription}. Starting transcription.")
                status_msg = "Status: Transcribing..."
                upload_status_msg = f"Status: Transcribing ({filename})..."
                loading_output = "Transcribing..."
                transcript_text = transcribe_audio(audio_path_for_transcription)
                session_data[session_id]["transcript"] = transcript_text
                session_data[session_id]["minutes"] = None
                session_data[session_id]["diarized"] = None
                if "Error:" in transcript_text:
                     status_msg = f"Status: Transcription Failed - {transcript_text}"
                     output_text = transcript_text
                     minutes_disabled = True
                     diarize_disabled = True
                     dl_transcript_disabled = True
                     dl_minutes_disabled = True
                     dl_diarized_disabled = True
                     delete_disabled = False
                     upload_status_msg = f"Status: Transcription Failed. ({filename})"
                else:
                     status_msg = "Status: Transcription Complete. Ready for Minutes/Diarization."
                     output_text = transcript_text
                     minutes_disabled = False
                     diarize_disabled = False
                     dl_transcript_disabled = False
                     dl_minutes_disabled = True
                     dl_diarized_disabled = True
                     delete_disabled = False
                     upload_status_msg = f"Status: Processed & Transcribed: {filename}"
                processing_time = time.time() - start_time
                logging.info(f"File processing and transcription took {processing_time:.2f} seconds for session {session_id}")
        else:
            status_msg = "Status: Error - Failed to save uploaded file data."
            output_text = "Failed to save uploaded file data."
            upload_status_msg = "Status: Error Saving Upload"
            session_data[session_id]["audio_path"] = None
            session_data[session_id]["original_filename"] = None
            minutes_disabled = True
            diarize_disabled = True
            dl_transcript_disabled = True
            dl_minutes_disabled = True
            dl_diarized_disabled = True
            dl_audio_disabled = True
            delete_disabled = False
    elif triggered_id == "minutes-btn" and minutes_clicks:
        logging.info(f"Generate Minutes button clicked for session {session_id}")
        current_transcript = session_data[session_id].get("transcript", "")
        if current_transcript and "Error:" not in current_transcript:
            status_msg = f"Status: Generating Minutes ({selected_model})..."
            loading_output = "Generating Minutes..."
            minutes_text = generate_minutes_ai(current_transcript, selected_model, session_id)
            session_data[session_id]["minutes"] = minutes_text
            # Always set output_text to minutes_text unless diarized is present and valid
            if session_data[session_id].get("diarized") and "Error:" not in session_data[session_id]["diarized"]:
                output_text = session_data[session_id]["diarized"]
            else:
                output_text = minutes_text
            if "Error:" in minutes_text:
                status_msg = f"Status: Minutes Generation Failed - {minutes_text}"
            else:
                status_msg = "Status: Minutes Generation Complete."
            processing_time = time.time() - start_time
            logging.info(f"Minutes generation took {processing_time:.2f} seconds for session {session_id}")
            minutes_disabled = False
            diarize_disabled = False
            dl_transcript_disabled = False
            dl_audio_disabled = not bool(session_data.get(session_id, {}).get("audio_path") and os.path.exists(session_data.get(session_id, {}).get("audio_path", "")))
            dl_minutes_disabled = not (minutes_text and "Error:" not in minutes_text)
            dl_diarized_disabled = not (session_data[session_id].get("diarized") and "Error:" not in session_data[session_id].get("diarized"))
            delete_disabled = False
            upload_status_msg = f"Status: Processed & Transcribed: {session_data[session_id].get('original_filename', 'File')}"
        else:
            status_msg = "Status: Cannot generate minutes - No valid transcript available."
            output_text = existing_preview
            minutes_disabled = True
    elif triggered_id == "diarize-btn" and diarize_clicks:
        logging.info(f"Diarize button clicked for session {session_id}")
        current_transcript = session_data[session_id].get("transcript", "")
        if current_transcript and "Error:" not in current_transcript:
            status_msg = f"Status: Diarizing Transcript ({selected_model})..."
            loading_output = "Diarizing Transcript..."
            diarized_text = diarize_transcript_ai(current_transcript, selected_model, session_id)
            session_data[session_id]["diarized"] = diarized_text
            if "Error:" in diarized_text:
                status_msg = f"Status: Diarization Failed - {diarized_text}"
            else:
                status_msg = "Status: Diarization Complete."
            output_text = diarized_text
            minutes_disabled = False
            diarize_disabled = False
            dl_transcript_disabled = False
            dl_audio_disabled = not bool(session_data.get(session_id, {}).get("audio_path") and os.path.exists(session_data.get(session_id, {}).get("audio_path", "")))
            dl_minutes_disabled = not (session_data[session_id].get("minutes") and "Error:" not in session_data[session_id].get("minutes"))
            dl_diarized_disabled = not (diarized_text and "Error:" not in diarized_text)
            delete_disabled = False
            upload_status_msg = f"Status: Processed & Transcribed: {session_data[session_id].get('original_filename', 'File')}"
        else:
            status_msg = "Status: Cannot diarize - No valid transcript available."
            output_text = existing_preview
            diarize_disabled = True
    elif triggered_id == "delete-btn" and delete_clicks:
        logging.info(f"Delete button clicked for session {session_id}")
        cleanup_session(session_id)
        status_msg = "Status: All session data deleted."
        output_text = "Session data cleared. Upload a new file."
        minutes_disabled = True
        diarize_disabled = True
        dl_transcript_disabled = True
        dl_minutes_disabled = True
        dl_diarized_disabled = True
        dl_audio_disabled = True
        delete_disabled = True
        upload_status_msg = "Status: Ready to Upload"
    else:
         loaded_audio_path = session_data.get(session_id, {}).get("audio_path")
         loaded_transcript = session_data.get(session_id, {}).get("transcript")
         loaded_minutes = session_data.get(session_id, {}).get("minutes")
         loaded_diarized = session_data.get(session_id, {}).get("diarized")
         temp_dir_exists = bool(session_data.get(session_id, {}).get("temp_dir"))
         loaded_original_filename = session_data.get(session_id, {}).get("original_filename")
         dl_audio_disabled = not (loaded_audio_path and os.path.exists(loaded_audio_path))
         minutes_disabled = not (loaded_transcript and "Error:" not in loaded_transcript)
         diarize_disabled = not (loaded_transcript and "Error:" not in loaded_transcript)
         dl_transcript_disabled = not (loaded_transcript and "Error:" not in loaded_transcript)
         dl_minutes_disabled = not (loaded_minutes and "Error:" not in loaded_minutes)
         dl_diarized_disabled = not (loaded_diarized and "Error:" not in loaded_diarized)
         delete_disabled = not (loaded_audio_path or loaded_transcript or loaded_minutes or loaded_diarized or temp_dir_exists or loaded_original_filename)
         # Output priority: diarized > minutes > transcript
         if loaded_diarized and "Error:" not in loaded_diarized:
             output_text = loaded_diarized
         elif loaded_minutes and "Error:" not in loaded_minutes:
             output_text = loaded_minutes
         elif loaded_transcript and "Error:" not in loaded_transcript:
             output_text = loaded_transcript
         else:
             output_text = "Upload an audio or video file to begin."
         if loaded_original_filename and dl_audio_disabled and not loaded_transcript:
             upload_status_msg = f"Status: Error processing {loaded_original_filename}?"
         elif loaded_audio_path and os.path.exists(loaded_audio_path):
             upload_status_msg = f"Status: Processed audio loaded ({loaded_original_filename or 'previous file'})."
         else:
             upload_status_msg = "Status: Ready to Upload"
    return (
        status_msg,
        output_text,
        minutes_disabled,
        diarize_disabled,
        dl_transcript_disabled,
        dl_minutes_disabled,
        dl_audio_disabled,
        dl_diarized_disabled,
        delete_disabled,
        loading_output,
        upload_status_msg
    )

@app.callback(
    Output("download-transcript", "data"),
    Input("download-transcript-btn", "n_clicks"),
    State("session-id", "data"),
    prevent_initial_call=True,
)
def download_transcript_file(n_clicks, session_id):
    if not session_id or not session_data.get(session_id, {}).get("transcript"):
        logging.warning(f"Download transcript requested but no data found for session {session_id}.")
        return None
    transcript = session_data[session_id]["transcript"]
    if "Error:" in transcript:
        logging.warning(f"Attempted to download transcript containing an error for session {session_id}.")
        return None
    session_dir = get_session_dir(session_id)
    transcript_filename = os.path.join(session_dir, f"transcript_{uuid.uuid4()}.docx")
    saved_doc_path = save_to_word(transcript, transcript_filename)
    if saved_doc_path:
         logging.info(f"Sending transcript file: {saved_doc_path}")
         original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0]
         download_filename = f"{original_filename_base}_transcript.docx"
         return dcc.send_file(saved_doc_path, filename=download_filename)
    else:
         logging.error(f"Failed to create Word document for transcript download for session {session_id}")
         return dcc.send_data_frame(lambda: transcript, "meeting_transcript.txt")

@app.callback(
    Output("download-minutes", "data"),
    Input("download-minutes-btn", "n_clicks"),
    State("session-id", "data"),
    prevent_initial_call=True,
)
def download_minutes_file(n_clicks, session_id):
    if not session_id or not session_data.get(session_id, {}).get("minutes"):
        logging.warning(f"Download minutes requested but no data found for session {session_id}.")
        return None
    minutes = session_data[session_id]["minutes"]
    if "Error:" in minutes:
        logging.warning(f"Attempted to download minutes containing an error for session {session_id}.")
        return None
    session_dir = get_session_dir(session_id)
    minutes_filename = os.path.join(session_dir, f"meeting_minutes_{uuid.uuid4()}.docx")
    saved_doc_path = save_to_word(minutes, minutes_filename)
    if saved_doc_path:
        logging.info(f"Sending minutes file: {saved_doc_path}")
        original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0]
        download_filename = f"{original_filename_base}_minutes.docx"
        return dcc.send_file(saved_doc_path, filename=download_filename)
    else:
        logging.error(f"Failed to create Word document for minutes download for session {session_id}")
        return dcc.send_data_frame(lambda: minutes, "meeting_minutes.txt")

@app.callback(
    Output("download-audio", "data"),
    Input("download-audio-btn", "n_clicks"),
    State("session-id", "data"),
    prevent_initial_call=True,
)
def download_audio_file(n_clicks, session_id):
    if not session_id or not session_data.get(session_id, {}).get("audio_path"):
        logging.warning(f"Download audio requested but no processed audio path found for session {session_id}.")
        return None
    audio_path = session_data[session_id]["audio_path"]
    original_filename = session_data[session_id].get("original_filename", "meeting_audio")
    if os.path.exists(audio_path):
        logging.info(f"Sending processed audio file: {audio_path}")
        original_filename_base = os.path.splitext(original_filename)[0]
        _, current_ext = os.path.splitext(audio_path)
        download_filename = f"{original_filename_base}_processed_audio{current_ext}"
        return dcc.send_file(audio_path, filename=download_filename)
    else:
        logging.error(f"Processed audio file not found at path {audio_path} for session {session_id}")
        return None

@app.callback(
    Output("download-diarized", "data"),
    Input("download-diarized-btn", "n_clicks"),
    State("session-id", "data"),
    prevent_initial_call=True,
)
def download_diarized_file(n_clicks, session_id):
    if not session_id or not session_data.get(session_id, {}).get("diarized"):
        logging.warning(f"Download diarized transcript requested but no data found for session {session_id}.")
        return None
    diarized = session_data[session_id]["diarized"]
    if "Error:" in diarized:
        logging.warning(f"Attempted to download diarized transcript containing an error for session {session_id}.")
        return None
    session_dir = get_session_dir(session_id)
    diarized_filename = os.path.join(session_dir, f"diarized_{uuid.uuid4()}.docx")
    saved_doc_path = save_to_word(diarized, diarized_filename)
    if saved_doc_path:
        logging.info(f"Sending diarized transcript file: {saved_doc_path}")
        original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0]
        download_filename = f"{original_filename_base}_diarized.docx"
        return dcc.send_file(saved_doc_path, filename=download_filename)
    else:
        logging.error(f"Failed to create Word document for diarized transcript download for session {session_id}")
        return dcc.send_data_frame(lambda: diarized, "meeting_diarized.txt")

if __name__ == '__main__':
    print("Starting the Dash application...")
    app.run(debug=False, host='0.0.0.0', port=7860)
    print("Dash application has finished running.")