import dash from dash import dcc, html, Input, Output, State, callback_context import dash_bootstrap_components as dbc import os import tempfile import base64 import openai import docx from datetime import datetime import threading import time import google.generativeai as genai from anthropic import Anthropic import requests import uuid import flask import shutil import logging from collections import defaultdict from moviepy import * logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') openai.api_key = os.getenv("OPENAI_API_KEY") if not openai.api_key: logging.warning("OPENAI_API_KEY not set. Transcription will fail.") google_api_key = os.getenv("GOOGLE_API_KEY") if google_api_key: try: genai.configure(api_key=google_api_key) except Exception as e: logging.error(f"Failed to configure Google Gemini: {e}") genai = None else: genai = None logging.warning("GOOGLE_API_KEY not set. Gemini model will not be available.") anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") if anthropic_api_key: try: anthropic = Anthropic(api_key=anthropic_api_key) except Exception as e: logging.error(f"Failed to initialize Anthropic client: {e}") anthropic = None else: anthropic = None logging.warning("ANTHROPIC_API_KEY not set. Claude model will not be available.") grok_api_key = os.getenv("GROK_API_KEY") if not grok_api_key: logging.warning("GROK_API_KEY not set. Groq model will not be available.") server = flask.Flask(__name__) app = dash.Dash(__name__, server=server, external_stylesheets=[dbc.themes.BOOTSTRAP], suppress_callback_exceptions=True) session_data = defaultdict(lambda: {"audio_path": None, "transcript": None, "minutes": None, "diarized": None, "temp_dir": None, "original_filename": None}) session_locks = defaultdict(threading.Lock) def get_session_dir(session_id): if session_data[session_id]["temp_dir"] is None or not os.path.exists(session_data[session_id]["temp_dir"]): session_specific_dir = tempfile.mkdtemp(prefix=f"session_{session_id}_") session_data[session_id]["temp_dir"] = session_specific_dir logging.info(f"Created temp directory for session {session_id}: {session_specific_dir}") return session_data[session_id]["temp_dir"] def cleanup_session(session_id): with session_locks[session_id]: logging.info(f"Cleaning up session: {session_id}") session_dir = session_data[session_id].get("temp_dir") if session_dir and os.path.exists(session_dir): try: shutil.rmtree(session_dir) logging.info(f"Removed temp directory: {session_dir}") except Exception as e: logging.error(f"Error removing directory {session_dir}: {e}") if session_id in session_data: del session_data[session_id] if session_id in session_locks: del session_locks[session_id] logging.info(f"Session data cleared for {session_id}") def save_base64_data(content_string, file_path): try: logging.info(f"Decoding base64 data for {file_path}") content_type, content_string = content_string.split(',') data_bytes = base64.b64decode(content_string) with open(file_path, 'wb') as f: f.write(data_bytes) logging.info(f"Saved uploaded data to {file_path}") return file_path except ValueError as e: logging.error(f"Error splitting content string: {e}. String might not be in 'type,base64_data' format.") return None except base64.binascii.Error as e: logging.error(f"Error decoding base64: {e}") return None except Exception as e: logging.error(f"Error saving base64 data: {e}") return None def extract_audio_from_video(video_path, audio_output_path): try: logging.info(f"Extracting audio from {video_path} to {audio_output_path}") video = VideoFileClip(video_path) video.audio.write_audiofile(audio_output_path, codec='mp3') video.close() logging.info(f"Successfully extracted audio to {audio_output_path}") return audio_output_path except Exception as e: logging.error(f"Error extracting audio from {video_path}: {e}") if os.path.exists(audio_output_path): os.remove(audio_output_path) if 'video' in locals() and hasattr(video, 'close'): video.close() return None def transcribe_audio(file_path): logging.info(f"Starting transcription for {file_path}") if not openai.api_key: return "Error: OpenAI API key not configured." if not os.path.exists(file_path): logging.error(f"Transcription failed: File not found at {file_path}") return "Error: Audio file not found for transcription." try: with open(file_path, "rb") as audio_file: client = openai.OpenAI() transcript = client.audio.transcriptions.create( model="whisper-1", file=audio_file, response_format="text" ) logging.info(f"Transcription successful for {file_path}") if isinstance(transcript, str): return transcript elif hasattr(transcript, 'text'): return transcript.text else: logging.error(f"Unexpected transcription response format: {type(transcript)}") return "Error: Could not extract transcript text from OpenAI response." except openai.BadRequestError as e: logging.error(f"OpenAI API Bad Request Error (possibly file format/size issue): {e}") error_message = f"Error during transcription: {e}" if "Invalid file format" in str(e): error_message = "Error: Invalid audio file format. Supported formats include mp3, mp4, mpeg, mpga, m4a, wav, and webm." elif "maximum file size" in str(e): error_message = "Error: Audio file exceeds the maximum size limit (25MB) for direct upload." return error_message except openai.AuthenticationError: logging.error("OpenAI API Authentication Error: Check your API key.") return "Error: OpenAI API Authentication Failed. Check API Key." except Exception as e: logging.error(f"An unexpected error occurred during transcription: {e}") return f"Error during transcription: An unexpected error occurred." def generate_minutes_ai(transcript, model_name, session_id): logging.info(f"Generating minutes using {model_name} for session {session_id}") if not transcript or "Error:" in transcript: return "Error: Cannot generate minutes from invalid or missing transcript." with session_locks[session_id]: try: if model_name == 'openai': if not openai.api_key: return "Error: OpenAI API key not configured." client = openai.OpenAI() response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a professional assistant tasked with creating structured meeting minutes, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made."}, {"role": "user", "content": f"Generate detailed meeting minutes from this transcript:\n\n{transcript}"} ], timeout=120 ) logging.info(f"OpenAI minutes generation successful for session {session_id}") return response.choices[0].message.content elif model_name == 'gemini': if not genai: return "Error: Google Gemini API not configured or key missing." model = genai.GenerativeModel('gemini-1.5-flash-latest') response = model.generate_content( f"Generate detailed meeting minutes from this transcript, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made:\n\n{transcript}", request_options={'timeout': 120} ) logging.info(f"Gemini minutes generation successful for session {session_id}") if response.parts: return response.text else: logging.warning(f"Gemini response blocked or empty for session {session_id}. Reason: {response.prompt_feedback}") return f"Error: Gemini response blocked or empty. Reason: {response.prompt_feedback}" elif model_name == 'anthropic': if not anthropic: return "Error: Anthropic API not configured or key missing." response = anthropic.messages.create( model="claude-3-5-haiku-20241022", max_tokens=2000, messages=[ { "role": "user", "content": f"Generate detailed meeting minutes from this transcript, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made:\n\n{transcript}" } ], timeout=120 ) logging.info(f"Anthropic minutes generation successful for session {session_id}") if response.content and isinstance(response.content, list) and hasattr(response.content[0], 'text'): return response.content[0].text else: logging.error(f"Could not extract content from Anthropic response: {response}") return "Error: Could not extract content from Anthropic response." elif model_name == 'grok': if not grok_api_key: return "Error: Grok API key (via Groq) not configured." groq_url = "https://api.groq.com/openai/v1/chat/completions" headers = { "Authorization": f"Bearer {grok_api_key}", "Content-Type": "application/json" } data = { "model": "grok-3-mini-fast-beta", "messages": [ {"role": "system", "content": "You are a professional assistant tasked with creating structured meeting minutes, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made."}, {"role": "user", "content": f"Generate detailed meeting minutes from this transcript:\n\n{transcript}"} ], "max_tokens": 2000, "temperature": 0.7 } response = requests.post(groq_url, headers=headers, json=data, timeout=120) response.raise_for_status() logging.info(f"Groq ({data['model']}) minutes generation successful for session {session_id}") return response.json()["choices"][0]["message"]["content"] else: logging.warning(f"Invalid model selection: {model_name}") return "Error: Invalid model selection" except requests.exceptions.Timeout: logging.error(f"API Request Timeout for {model_name} on session {session_id}") return f"Error: Request to {model_name} API timed out." except requests.exceptions.RequestException as e: logging.error(f"API Request Error for {model_name}: {e}") if model_name == 'grok' and e.response is not None: if e.response.status_code == 429: logging.warning(f"Groq Rate Limit hit for session {session_id}") return "Error: Groq API rate limit exceeded. Please try again later." elif e.response.status_code == 404: logging.error(f"Model {data['model']} not found via Groq API. Status: {e.response.status_code}. Response: {e.response.text}") return f"Error: Model '{data['model']}' not found or accessible via Groq API. Please check model availability." elif e.response.status_code >= 400: logging.error(f"Groq API error. Status: {e.response.status_code}. Response: {e.response.text}") return f"Error communicating with Groq API: {e.response.status_code}" return f"Error communicating with {model_name} API: {e}" except (genai.types.generation_types.BlockedPromptException, genai.types.generation_types.StopCandidateException) as e: logging.error(f"Gemini content generation issue for session {session_id}: {e}") return f"Error: Gemini generation failed or was blocked. {e}" except Exception as e: logging.error(f"Error generating minutes with {model_name} for session {session_id}: {e}", exc_info=True) if model_name == 'anthropic' and 'Could not find model' in str(e): return f"Error: Anthropic model '{response.model if 'response' in locals() else 'claude-3-5-haiku-20241022'}' not found or accessible. Check model name and API key permissions." elif model_name == 'gemini' and 'model not found' in str(e).lower(): return f"Error: Gemini model '{model.model_name if 'model' in locals() else 'gemini-1.5-flash-latest'}' not found or accessible. Check model name and API key permissions." return f"Error generating minutes using {model_name}: An unexpected error occurred." def diarize_transcript_ai(transcript, model_name, session_id): logging.info(f"Generating diarized transcript using {model_name} for session {session_id}") if not transcript or "Error:" in transcript: return "Error: Cannot diarize invalid or missing transcript." diarization_prompt = ( "Analyze the given transcript to identify distinct speakers without labeled identifiers. " "Create unique speaker embeddings based on individual speech patterns, vocabulary choices, and linguistic styles. " "Examine the context and content of each utterance to detect likely speaker changes. " "Recognize typical conversation structures and turn-taking behaviors to differentiate between speakers. " "Finally, use topic modeling to identify shifts in subject matter and areas of expertise, associating certain topics with specific speakers. " "Based on this analysis, assign speaker labels (e.g., Speaker 1, Speaker 2) to each utterance in the transcript." "\n\nTranscript:\n" + transcript ) with session_locks[session_id]: try: if model_name == 'openai': if not openai.api_key: return "Error: OpenAI API key not configured." client = openai.OpenAI() response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a professional assistant skilled in speaker diarization and transcript formatting."}, {"role": "user", "content": diarization_prompt} ], timeout=120 ) logging.info(f"OpenAI diarization successful for session {session_id}") return response.choices[0].message.content elif model_name == 'gemini': if not genai: return "Error: Google Gemini API not configured or key missing." model = genai.GenerativeModel('gemini-1.5-flash-latest') response = model.generate_content( diarization_prompt, request_options={'timeout': 120} ) logging.info(f"Gemini diarization successful for session {session_id}") if response.parts: return response.text else: logging.warning(f"Gemini diarization response blocked or empty for session {session_id}. Reason: {response.prompt_feedback}") return f"Error: Gemini response blocked or empty. Reason: {response.prompt_feedback}" elif model_name == 'anthropic': if not anthropic: return "Error: Anthropic API not configured or key missing." response = anthropic.messages.create( model="claude-3-5-haiku-20241022", max_tokens=2000, messages=[ { "role": "user", "content": diarization_prompt } ], timeout=120 ) logging.info(f"Anthropic diarization successful for session {session_id}") if response.content and isinstance(response.content, list) and hasattr(response.content[0], 'text'): return response.content[0].text else: logging.error(f"Could not extract content from Anthropic diarization response: {response}") return "Error: Could not extract content from Anthropic response." elif model_name == 'grok': if not grok_api_key: return "Error: Grok API key (via Groq) not configured." groq_url = "https://api.groq.com/openai/v1/chat/completions" headers = { "Authorization": f"Bearer {grok_api_key}", "Content-Type": "application/json" } data = { "model": "grok-3-mini-fast-beta", "messages": [ {"role": "system", "content": "You are a professional assistant skilled in speaker diarization and transcript formatting."}, {"role": "user", "content": diarization_prompt} ], "max_tokens": 2000, "temperature": 0.7 } response = requests.post(groq_url, headers=headers, json=data, timeout=120) response.raise_for_status() logging.info(f"Groq ({data['model']}) diarization successful for session {session_id}") return response.json()["choices"][0]["message"]["content"] else: logging.warning(f"Invalid model selection for diarization: {model_name}") return "Error: Invalid model selection" except Exception as e: logging.error(f"Error during diarization with {model_name} for session {session_id}: {e}", exc_info=True) return f"Error generating diarized transcript using {model_name}: An unexpected error occurred." def save_to_word(content, filename): try: doc = docx.Document() doc.add_paragraph(content) doc.save(filename) logging.info(f"Saved content to Word document: {filename}") return filename except Exception as e: logging.error(f"Error saving to Word document {filename}: {e}") return None ALLOWED_AUDIO_EXTENSIONS = ['.mp3', '.wav', '.m4a', '.webm', '.mp4', '.mpeg', '.mpga'] ALLOWED_VIDEO_EXTENSIONS = ['.mp4', '.mov', '.avi', '.webm', '.mkv', '.flv'] ALLOWED_UPLOAD_EXTENSIONS = ALLOWED_AUDIO_EXTENSIONS + ALLOWED_VIDEO_EXTENSIONS app.layout = dbc.Container([ dcc.Store(id='session-id', storage_type='local'), dcc.Store(id='session-state-trigger'), dcc.Download(id="download-transcript"), dcc.Download(id="download-audio"), dcc.Download(id="download-minutes"), dcc.Download(id="download-diarized"), dbc.Row([ dbc.Col(dbc.Card( dbc.CardBody([ html.H4("Controls", className="card-title"), html.Div("Upload meeting audio or video file:"), dcc.Upload( id='audio-uploader', children=html.Div([ 'Drag and Drop or ', html.A('Select Audio/Video File') ]), style={ 'width': '100%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px 0' }, multiple=False, accept='audio/*,video/*' ), html.Div(id='upload-status', children='Status: Ready to Upload', className="mt-2"), html.H5("Select AI Model", className="mt-4"), dcc.Dropdown( id='model-selection', options=[ {'label': 'OpenAI GPT-3.5 Turbo', 'value': 'openai', 'disabled': not openai.api_key}, {'label': 'Google Gemini 1.5 Flash', 'value': 'gemini', 'disabled': not genai}, {'label': 'Anthropic Claude 3.5 Haiku', 'value': 'anthropic', 'disabled': not anthropic}, {'label': 'Grok 3 Mini', 'value': 'grok', 'disabled': not grok_api_key} ], value='openai' if openai.api_key else ('gemini' if genai else ('anthropic' if anthropic else ('grok' if grok_api_key else None))), clearable=False, className="mt-2", disabled=not (openai.api_key or genai or anthropic or grok_api_key) ), dbc.Button("Generate Minutes", id="minutes-btn", color="secondary", className="mt-4 w-100", disabled=True), dbc.Button("Diarize Transcript", id="diarize-btn", color="secondary", className="mt-2 w-100", disabled=True), html.H5("Downloads", className="mt-4"), dbc.Button("Download Transcript (.docx)", id="download-transcript-btn", color="info", className="w-100 mb-2", disabled=True), dbc.Button("Download Minutes (.docx)", id="download-minutes-btn", color="info", className="w-100 mb-2", disabled=True), dbc.Button("Download Processed Audio", id="download-audio-btn", color="info", className="w-100 mb-2", disabled=True), dbc.Button("Download Diarized Transcript (.docx)", id="download-diarized-btn", color="info", className="w-100 mb-2", disabled=True), dbc.Button("Delete Session Data", id="delete-btn", color="warning", className="mt-4 w-100", disabled=True), ]), style={'height': '80vh', 'overflow-y': 'auto'} ), width=12, lg=4), dbc.Col(dbc.Card( dbc.CardBody([ dcc.Loading( id="loading", type="default", parent_style={'position': 'relative', 'height': '100%'}, style={'position': 'absolute', 'top': '50%', 'left': '50%', 'transform': 'translate(-50%, -50%)', 'zIndex':'1000'}, children=[ html.Div([ html.H4("Output", className="card-title"), html.Div(id="status", children="Status: Idle", className="mb-2"), html.H5("Transcript / Minutes / Diarization"), html.Div(id="transcript-preview", style={ "height": "400px", "overflow-y": "scroll", "border": "1px solid #ccc", "padding": "10px", "white-space": "pre-wrap", "word-wrap": "break-word", "background-color": "#f9f9f9" }), ]) ] ), html.Div(id="loading-output", style={"height": "0px", "visibility": "hidden"}), ]), style={'height': '80vh', 'overflow-y': 'auto', 'position': 'relative'} ), width=12, lg=8), ]) ], fluid=True) @app.callback( Output('session-id', 'data'), Input('session-id', 'data'), prevent_initial_call=False ) def manage_session_id(existing_session_id): session_cookie = flask.request.cookies.get('dash-session-id') ctx = dash.callback_context final_session_id = None source = "none" if existing_session_id and not ctx.triggered: final_session_id = existing_session_id source = "store (initial)" elif existing_session_id and session_cookie == existing_session_id: final_session_id = existing_session_id source = "store/cookie match" elif session_cookie: final_session_id = session_cookie source = "cookie" else: final_session_id = str(uuid.uuid4()) source = "new generation" if final_session_id not in session_data: logging.info(f"Initializing server-side session for ID: {final_session_id} (Source: {source})") get_session_dir(final_session_id) logging.info(f"Manage Session ID - Final ID: {final_session_id}, Source: {source}, Store Input: {existing_session_id}, Cookie Input: {session_cookie}") response = dash.callback_context.response if source == "new generation" or (session_cookie != final_session_id): logging.info(f"Setting session cookie for ID: {final_session_id}") response.set_cookie('dash-session-id', final_session_id, max_age=60*60*24*7) return final_session_id @app.callback( [ Output("status", "children"), Output("transcript-preview", "children"), Output("minutes-btn", "disabled"), Output("diarize-btn", "disabled"), Output("download-transcript-btn", "disabled"), Output("download-minutes-btn", "disabled"), Output("download-audio-btn", "disabled"), Output("download-diarized-btn", "disabled"), Output("delete-btn", "disabled"), Output("loading-output", "children"), Output("upload-status", "children") ], [ Input('audio-uploader', 'contents'), Input("minutes-btn", "n_clicks"), Input("diarize-btn", "n_clicks"), Input("delete-btn", "n_clicks") ], [ State("session-id", "data"), State("model-selection", "value"), State("transcript-preview", "children"), State('audio-uploader', 'filename') ], prevent_initial_call=True ) def handle_actions(upload_contents, minutes_clicks, diarize_clicks, delete_clicks, session_id, selected_model, existing_preview, filename): if not session_id: logging.warning("Session ID missing in handle_actions.") return "Status: Error - Session ID missing", "", True, True, True, True, True, True, True, None, "Status: Error" ctx = dash.callback_context triggered_id = ctx.triggered_id if hasattr(ctx, 'triggered_id') else (ctx.triggered[0]['prop_id'].split('.')[0] if ctx.triggered else None) current_transcript = session_data[session_id].get("transcript", "") current_minutes = session_data[session_id].get("minutes", "") current_diarized = session_data[session_id].get("diarized", "") current_audio_path = session_data[session_id].get("audio_path", None) original_filename = session_data[session_id].get("original_filename", None) output_text = "" # Prioritize showing diarized > minutes > transcript if current_diarized and "Error:" not in current_diarized: output_text = current_diarized elif current_minutes and "Error:" not in current_minutes: output_text = current_minutes elif current_transcript and "Error:" not in current_transcript: output_text = current_transcript else: output_text = "Upload an audio or video file to begin." status_msg = "Status: Idle" if current_diarized and "Error:" not in current_diarized: status_msg = "Status: Session restored. Diarized transcript loaded." elif current_minutes and "Error:" not in current_minutes: status_msg = "Status: Session restored. Minutes loaded." elif current_transcript and "Error:" not in current_transcript: status_msg = "Status: Session restored. Transcript loaded. Ready for Minutes Generation." elif current_audio_path and os.path.exists(current_audio_path): status_msg = f"Status: Session restored. Processed audio loaded ({os.path.basename(original_filename if original_filename else 'file')}). Ready for transcription/minutes." elif original_filename: status_msg = f"Status: Session restored. Previous upload ({original_filename}) might have had issues." minutes_disabled = not bool(current_transcript and "Error:" not in current_transcript) diarize_disabled = not bool(current_transcript and "Error:" not in current_transcript) dl_transcript_disabled = not bool(current_transcript and "Error:" not in current_transcript) dl_minutes_disabled = not bool(current_minutes and "Error:" not in current_minutes) dl_audio_disabled = not bool(current_audio_path and os.path.exists(current_audio_path)) dl_diarized_disabled = not bool(current_diarized and "Error:" not in current_diarized) delete_disabled = not bool(session_data.get(session_id, {}).get("temp_dir")) loading_output = None upload_status_msg = f"Status: {'Loaded: ' + original_filename if original_filename else 'Ready to Upload'}" start_time = time.time() if triggered_id == 'audio-uploader' and upload_contents is not None and filename is not None: logging.info(f"File uploaded for session {session_id}, filename: {filename}") session_data[session_id]["original_filename"] = filename upload_status_msg = f"Status: Processing Uploaded File ({filename})..." status_msg = "Status: Processing Upload..." loading_output = "Processing Upload..." session_dir = get_session_dir(session_id) _, f_ext = os.path.splitext(filename) f_ext_lower = f_ext.lower() if f_ext_lower not in ALLOWED_UPLOAD_EXTENSIONS: status_msg = f"Status: Error - Invalid file type ({f_ext}). Please upload audio or video." output_text = f"Error: Invalid file type ({f_ext}). Allowed types: {', '.join(ALLOWED_UPLOAD_EXTENSIONS)}" upload_status_msg = f"Status: Invalid File Type ({filename})" session_data[session_id]["audio_path"] = None session_data[session_id]["transcript"] = None session_data[session_id]["minutes"] = None session_data[session_id]["diarized"] = None session_data[session_id]["original_filename"] = None minutes_disabled = True diarize_disabled = True dl_transcript_disabled = True dl_minutes_disabled = True dl_diarized_disabled = True dl_audio_disabled = True delete_disabled = False return status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, None, upload_status_msg safe_upload_filename = f"uploaded_file{f_ext}" upload_file_path = os.path.join(session_dir, safe_upload_filename) saved_upload_path = save_base64_data(upload_contents, upload_file_path) if saved_upload_path: audio_path_for_transcription = None is_video = f_ext_lower in ALLOWED_VIDEO_EXTENSIONS if is_video: status_msg = "Status: Extracting audio from video..." upload_status_msg = "Status: Extracting Audio..." loading_output = "Extracting Audio..." extracted_audio_filename = os.path.join(session_dir, f"extracted_audio_{uuid.uuid4()}.mp3") extracted_audio_path = extract_audio_from_video(saved_upload_path, extracted_audio_filename) if extracted_audio_path: audio_path_for_transcription = extracted_audio_path session_data[session_id]["audio_path"] = extracted_audio_path dl_audio_disabled = False try: os.remove(saved_upload_path) logging.info(f"Removed original video file: {saved_upload_path}") except Exception as e: logging.warning(f"Could not remove original video file {saved_upload_path}: {e}") else: status_msg = "Status: Error - Failed to extract audio from video." output_text = "Error: Failed to extract audio from video file. Check if the file is valid." upload_status_msg = f"Status: Error Extracting Audio ({filename})" session_data[session_id]["audio_path"] = None minutes_disabled = True diarize_disabled = True dl_transcript_disabled = True dl_minutes_disabled = True dl_diarized_disabled = True dl_audio_disabled = True delete_disabled = False return status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, None, upload_status_msg else: audio_path_for_transcription = saved_upload_path session_data[session_id]["audio_path"] = saved_upload_path dl_audio_disabled = False if audio_path_for_transcription: logging.info(f"Audio path set for session {session_id}: {audio_path_for_transcription}. Starting transcription.") status_msg = "Status: Transcribing..." upload_status_msg = f"Status: Transcribing ({filename})..." loading_output = "Transcribing..." transcript_text = transcribe_audio(audio_path_for_transcription) session_data[session_id]["transcript"] = transcript_text session_data[session_id]["minutes"] = None session_data[session_id]["diarized"] = None if "Error:" in transcript_text: status_msg = f"Status: Transcription Failed - {transcript_text}" output_text = transcript_text minutes_disabled = True diarize_disabled = True dl_transcript_disabled = True dl_minutes_disabled = True dl_diarized_disabled = True delete_disabled = False upload_status_msg = f"Status: Transcription Failed. ({filename})" else: status_msg = "Status: Transcription Complete. Ready for Minutes/Diarization." output_text = transcript_text minutes_disabled = False diarize_disabled = False dl_transcript_disabled = False dl_minutes_disabled = True dl_diarized_disabled = True delete_disabled = False upload_status_msg = f"Status: Processed & Transcribed: {filename}" processing_time = time.time() - start_time logging.info(f"File processing and transcription took {processing_time:.2f} seconds for session {session_id}") else: status_msg = "Status: Error - Failed to save uploaded file data." output_text = "Failed to save uploaded file data." upload_status_msg = "Status: Error Saving Upload" session_data[session_id]["audio_path"] = None session_data[session_id]["original_filename"] = None minutes_disabled = True diarize_disabled = True dl_transcript_disabled = True dl_minutes_disabled = True dl_diarized_disabled = True dl_audio_disabled = True delete_disabled = False elif triggered_id == "minutes-btn" and minutes_clicks: logging.info(f"Generate Minutes button clicked for session {session_id}") current_transcript = session_data[session_id].get("transcript", "") if current_transcript and "Error:" not in current_transcript: status_msg = f"Status: Generating Minutes ({selected_model})..." loading_output = "Generating Minutes..." minutes_text = generate_minutes_ai(current_transcript, selected_model, session_id) session_data[session_id]["minutes"] = minutes_text # Always set output_text to minutes_text unless diarized is present and valid if session_data[session_id].get("diarized") and "Error:" not in session_data[session_id]["diarized"]: output_text = session_data[session_id]["diarized"] else: output_text = minutes_text if "Error:" in minutes_text: status_msg = f"Status: Minutes Generation Failed - {minutes_text}" else: status_msg = "Status: Minutes Generation Complete." processing_time = time.time() - start_time logging.info(f"Minutes generation took {processing_time:.2f} seconds for session {session_id}") minutes_disabled = False diarize_disabled = False dl_transcript_disabled = False dl_audio_disabled = not bool(session_data.get(session_id, {}).get("audio_path") and os.path.exists(session_data.get(session_id, {}).get("audio_path", ""))) dl_minutes_disabled = not (minutes_text and "Error:" not in minutes_text) dl_diarized_disabled = not (session_data[session_id].get("diarized") and "Error:" not in session_data[session_id].get("diarized")) delete_disabled = False upload_status_msg = f"Status: Processed & Transcribed: {session_data[session_id].get('original_filename', 'File')}" else: status_msg = "Status: Cannot generate minutes - No valid transcript available." output_text = existing_preview minutes_disabled = True elif triggered_id == "diarize-btn" and diarize_clicks: logging.info(f"Diarize button clicked for session {session_id}") current_transcript = session_data[session_id].get("transcript", "") if current_transcript and "Error:" not in current_transcript: status_msg = f"Status: Diarizing Transcript ({selected_model})..." loading_output = "Diarizing Transcript..." diarized_text = diarize_transcript_ai(current_transcript, selected_model, session_id) session_data[session_id]["diarized"] = diarized_text if "Error:" in diarized_text: status_msg = f"Status: Diarization Failed - {diarized_text}" else: status_msg = "Status: Diarization Complete." output_text = diarized_text minutes_disabled = False diarize_disabled = False dl_transcript_disabled = False dl_audio_disabled = not bool(session_data.get(session_id, {}).get("audio_path") and os.path.exists(session_data.get(session_id, {}).get("audio_path", ""))) dl_minutes_disabled = not (session_data[session_id].get("minutes") and "Error:" not in session_data[session_id].get("minutes")) dl_diarized_disabled = not (diarized_text and "Error:" not in diarized_text) delete_disabled = False upload_status_msg = f"Status: Processed & Transcribed: {session_data[session_id].get('original_filename', 'File')}" else: status_msg = "Status: Cannot diarize - No valid transcript available." output_text = existing_preview diarize_disabled = True elif triggered_id == "delete-btn" and delete_clicks: logging.info(f"Delete button clicked for session {session_id}") cleanup_session(session_id) status_msg = "Status: All session data deleted." output_text = "Session data cleared. Upload a new file." minutes_disabled = True diarize_disabled = True dl_transcript_disabled = True dl_minutes_disabled = True dl_diarized_disabled = True dl_audio_disabled = True delete_disabled = True upload_status_msg = "Status: Ready to Upload" else: loaded_audio_path = session_data.get(session_id, {}).get("audio_path") loaded_transcript = session_data.get(session_id, {}).get("transcript") loaded_minutes = session_data.get(session_id, {}).get("minutes") loaded_diarized = session_data.get(session_id, {}).get("diarized") temp_dir_exists = bool(session_data.get(session_id, {}).get("temp_dir")) loaded_original_filename = session_data.get(session_id, {}).get("original_filename") dl_audio_disabled = not (loaded_audio_path and os.path.exists(loaded_audio_path)) minutes_disabled = not (loaded_transcript and "Error:" not in loaded_transcript) diarize_disabled = not (loaded_transcript and "Error:" not in loaded_transcript) dl_transcript_disabled = not (loaded_transcript and "Error:" not in loaded_transcript) dl_minutes_disabled = not (loaded_minutes and "Error:" not in loaded_minutes) dl_diarized_disabled = not (loaded_diarized and "Error:" not in loaded_diarized) delete_disabled = not (loaded_audio_path or loaded_transcript or loaded_minutes or loaded_diarized or temp_dir_exists or loaded_original_filename) # Output priority: diarized > minutes > transcript if loaded_diarized and "Error:" not in loaded_diarized: output_text = loaded_diarized elif loaded_minutes and "Error:" not in loaded_minutes: output_text = loaded_minutes elif loaded_transcript and "Error:" not in loaded_transcript: output_text = loaded_transcript else: output_text = "Upload an audio or video file to begin." if loaded_original_filename and dl_audio_disabled and not loaded_transcript: upload_status_msg = f"Status: Error processing {loaded_original_filename}?" elif loaded_audio_path and os.path.exists(loaded_audio_path): upload_status_msg = f"Status: Processed audio loaded ({loaded_original_filename or 'previous file'})." else: upload_status_msg = "Status: Ready to Upload" return ( status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, loading_output, upload_status_msg ) @app.callback( Output("download-transcript", "data"), Input("download-transcript-btn", "n_clicks"), State("session-id", "data"), prevent_initial_call=True, ) def download_transcript_file(n_clicks, session_id): if not session_id or not session_data.get(session_id, {}).get("transcript"): logging.warning(f"Download transcript requested but no data found for session {session_id}.") return None transcript = session_data[session_id]["transcript"] if "Error:" in transcript: logging.warning(f"Attempted to download transcript containing an error for session {session_id}.") return None session_dir = get_session_dir(session_id) transcript_filename = os.path.join(session_dir, f"transcript_{uuid.uuid4()}.docx") saved_doc_path = save_to_word(transcript, transcript_filename) if saved_doc_path: logging.info(f"Sending transcript file: {saved_doc_path}") original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0] download_filename = f"{original_filename_base}_transcript.docx" return dcc.send_file(saved_doc_path, filename=download_filename) else: logging.error(f"Failed to create Word document for transcript download for session {session_id}") return dcc.send_data_frame(lambda: transcript, "meeting_transcript.txt") @app.callback( Output("download-minutes", "data"), Input("download-minutes-btn", "n_clicks"), State("session-id", "data"), prevent_initial_call=True, ) def download_minutes_file(n_clicks, session_id): if not session_id or not session_data.get(session_id, {}).get("minutes"): logging.warning(f"Download minutes requested but no data found for session {session_id}.") return None minutes = session_data[session_id]["minutes"] if "Error:" in minutes: logging.warning(f"Attempted to download minutes containing an error for session {session_id}.") return None session_dir = get_session_dir(session_id) minutes_filename = os.path.join(session_dir, f"meeting_minutes_{uuid.uuid4()}.docx") saved_doc_path = save_to_word(minutes, minutes_filename) if saved_doc_path: logging.info(f"Sending minutes file: {saved_doc_path}") original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0] download_filename = f"{original_filename_base}_minutes.docx" return dcc.send_file(saved_doc_path, filename=download_filename) else: logging.error(f"Failed to create Word document for minutes download for session {session_id}") return dcc.send_data_frame(lambda: minutes, "meeting_minutes.txt") @app.callback( Output("download-audio", "data"), Input("download-audio-btn", "n_clicks"), State("session-id", "data"), prevent_initial_call=True, ) def download_audio_file(n_clicks, session_id): if not session_id or not session_data.get(session_id, {}).get("audio_path"): logging.warning(f"Download audio requested but no processed audio path found for session {session_id}.") return None audio_path = session_data[session_id]["audio_path"] original_filename = session_data[session_id].get("original_filename", "meeting_audio") if os.path.exists(audio_path): logging.info(f"Sending processed audio file: {audio_path}") original_filename_base = os.path.splitext(original_filename)[0] _, current_ext = os.path.splitext(audio_path) download_filename = f"{original_filename_base}_processed_audio{current_ext}" return dcc.send_file(audio_path, filename=download_filename) else: logging.error(f"Processed audio file not found at path {audio_path} for session {session_id}") return None @app.callback( Output("download-diarized", "data"), Input("download-diarized-btn", "n_clicks"), State("session-id", "data"), prevent_initial_call=True, ) def download_diarized_file(n_clicks, session_id): if not session_id or not session_data.get(session_id, {}).get("diarized"): logging.warning(f"Download diarized transcript requested but no data found for session {session_id}.") return None diarized = session_data[session_id]["diarized"] if "Error:" in diarized: logging.warning(f"Attempted to download diarized transcript containing an error for session {session_id}.") return None session_dir = get_session_dir(session_id) diarized_filename = os.path.join(session_dir, f"diarized_{uuid.uuid4()}.docx") saved_doc_path = save_to_word(diarized, diarized_filename) if saved_doc_path: logging.info(f"Sending diarized transcript file: {saved_doc_path}") original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0] download_filename = f"{original_filename_base}_diarized.docx" return dcc.send_file(saved_doc_path, filename=download_filename) else: logging.error(f"Failed to create Word document for diarized transcript download for session {session_id}") return dcc.send_data_frame(lambda: diarized, "meeting_diarized.txt") if __name__ == '__main__': print("Starting the Dash application...") app.run(debug=False, host='0.0.0.0', port=7860) print("Dash application has finished running.")