import dash
from dash import dcc, html, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
import os
import tempfile
import base64
import openai
import docx
from datetime import datetime
import threading
import time
import google.generativeai as genai
from anthropic import Anthropic
import requests
import uuid
import flask
import shutil
import logging
from collections import defaultdict
from moviepy import *
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
logging.warning("OPENAI_API_KEY not set. Transcription will fail.")
google_api_key = os.getenv("GOOGLE_API_KEY")
if google_api_key:
try:
genai.configure(api_key=google_api_key)
except Exception as e:
logging.error(f"Failed to configure Google Gemini: {e}")
genai = None
else:
genai = None
logging.warning("GOOGLE_API_KEY not set. Gemini model will not be available.")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
if anthropic_api_key:
try:
anthropic = Anthropic(api_key=anthropic_api_key)
except Exception as e:
logging.error(f"Failed to initialize Anthropic client: {e}")
anthropic = None
else:
anthropic = None
logging.warning("ANTHROPIC_API_KEY not set. Claude model will not be available.")
grok_api_key = os.getenv("GROK_API_KEY")
if not grok_api_key:
logging.warning("GROK_API_KEY not set. Groq model will not be available.")
server = flask.Flask(__name__)
app = dash.Dash(__name__, server=server, external_stylesheets=[dbc.themes.BOOTSTRAP], suppress_callback_exceptions=True)
session_data = defaultdict(lambda: {"audio_path": None, "transcript": None, "minutes": None, "diarized": None, "temp_dir": None, "original_filename": None})
session_locks = defaultdict(threading.Lock)
def get_session_dir(session_id):
if session_data[session_id]["temp_dir"] is None or not os.path.exists(session_data[session_id]["temp_dir"]):
session_specific_dir = tempfile.mkdtemp(prefix=f"session_{session_id}_")
session_data[session_id]["temp_dir"] = session_specific_dir
logging.info(f"Created temp directory for session {session_id}: {session_specific_dir}")
return session_data[session_id]["temp_dir"]
def cleanup_session(session_id):
with session_locks[session_id]:
logging.info(f"Cleaning up session: {session_id}")
session_dir = session_data[session_id].get("temp_dir")
if session_dir and os.path.exists(session_dir):
try:
shutil.rmtree(session_dir)
logging.info(f"Removed temp directory: {session_dir}")
except Exception as e:
logging.error(f"Error removing directory {session_dir}: {e}")
if session_id in session_data:
del session_data[session_id]
if session_id in session_locks:
del session_locks[session_id]
logging.info(f"Session data cleared for {session_id}")
def save_base64_data(content_string, file_path):
try:
logging.info(f"Decoding base64 data for {file_path}")
content_type, content_string = content_string.split(',')
data_bytes = base64.b64decode(content_string)
with open(file_path, 'wb') as f:
f.write(data_bytes)
logging.info(f"Saved uploaded data to {file_path}")
return file_path
except ValueError as e:
logging.error(f"Error splitting content string: {e}. String might not be in 'type,base64_data' format.")
return None
except base64.binascii.Error as e:
logging.error(f"Error decoding base64: {e}")
return None
except Exception as e:
logging.error(f"Error saving base64 data: {e}")
return None
def extract_audio_from_video(video_path, audio_output_path):
try:
logging.info(f"Extracting audio from {video_path} to {audio_output_path}")
video = VideoFileClip(video_path)
video.audio.write_audiofile(audio_output_path, codec='mp3')
video.close()
logging.info(f"Successfully extracted audio to {audio_output_path}")
return audio_output_path
except Exception as e:
logging.error(f"Error extracting audio from {video_path}: {e}")
if os.path.exists(audio_output_path):
os.remove(audio_output_path)
if 'video' in locals() and hasattr(video, 'close'):
video.close()
return None
def transcribe_audio(file_path):
logging.info(f"Starting transcription for {file_path}")
if not openai.api_key:
return "Error: OpenAI API key not configured."
if not os.path.exists(file_path):
logging.error(f"Transcription failed: File not found at {file_path}")
return "Error: Audio file not found for transcription."
try:
with open(file_path, "rb") as audio_file:
client = openai.OpenAI()
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
logging.info(f"Transcription successful for {file_path}")
if isinstance(transcript, str):
return transcript
elif hasattr(transcript, 'text'):
return transcript.text
else:
logging.error(f"Unexpected transcription response format: {type(transcript)}")
return "Error: Could not extract transcript text from OpenAI response."
except openai.BadRequestError as e:
logging.error(f"OpenAI API Bad Request Error (possibly file format/size issue): {e}")
error_message = f"Error during transcription: {e}"
if "Invalid file format" in str(e):
error_message = "Error: Invalid audio file format. Supported formats include mp3, mp4, mpeg, mpga, m4a, wav, and webm."
elif "maximum file size" in str(e):
error_message = "Error: Audio file exceeds the maximum size limit (25MB) for direct upload."
return error_message
except openai.AuthenticationError:
logging.error("OpenAI API Authentication Error: Check your API key.")
return "Error: OpenAI API Authentication Failed. Check API Key."
except Exception as e:
logging.error(f"An unexpected error occurred during transcription: {e}")
return f"Error during transcription: An unexpected error occurred."
def generate_minutes_ai(transcript, model_name, session_id):
logging.info(f"Generating minutes using {model_name} for session {session_id}")
if not transcript or "Error:" in transcript:
return "Error: Cannot generate minutes from invalid or missing transcript."
with session_locks[session_id]:
try:
if model_name == 'openai':
if not openai.api_key: return "Error: OpenAI API key not configured."
client = openai.OpenAI()
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a professional assistant tasked with creating structured meeting minutes, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made."},
{"role": "user", "content": f"Generate detailed meeting minutes from this transcript:\n\n{transcript}"}
],
timeout=120
)
logging.info(f"OpenAI minutes generation successful for session {session_id}")
return response.choices[0].message.content
elif model_name == 'gemini':
if not genai: return "Error: Google Gemini API not configured or key missing."
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content(
f"Generate detailed meeting minutes from this transcript, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made:\n\n{transcript}",
request_options={'timeout': 120}
)
logging.info(f"Gemini minutes generation successful for session {session_id}")
if response.parts:
return response.text
else:
logging.warning(f"Gemini response blocked or empty for session {session_id}. Reason: {response.prompt_feedback}")
return f"Error: Gemini response blocked or empty. Reason: {response.prompt_feedback}"
elif model_name == 'anthropic':
if not anthropic: return "Error: Anthropic API not configured or key missing."
response = anthropic.messages.create(
model="claude-3-5-haiku-20241022",
max_tokens=2000,
messages=[
{
"role": "user",
"content": f"Generate detailed meeting minutes from this transcript, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made:\n\n{transcript}"
}
],
timeout=120
)
logging.info(f"Anthropic minutes generation successful for session {session_id}")
if response.content and isinstance(response.content, list) and hasattr(response.content[0], 'text'):
return response.content[0].text
else:
logging.error(f"Could not extract content from Anthropic response: {response}")
return "Error: Could not extract content from Anthropic response."
elif model_name == 'grok':
if not grok_api_key: return "Error: Grok API key (via Groq) not configured."
groq_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {grok_api_key}",
"Content-Type": "application/json"
}
data = {
"model": "grok-3-mini-fast-beta",
"messages": [
{"role": "system", "content": "You are a professional assistant tasked with creating structured meeting minutes, including sections like Attendees, Agenda, Discussion Points, Action Items, and Decisions Made."},
{"role": "user", "content": f"Generate detailed meeting minutes from this transcript:\n\n{transcript}"}
],
"max_tokens": 2000,
"temperature": 0.7
}
response = requests.post(groq_url, headers=headers, json=data, timeout=120)
response.raise_for_status()
logging.info(f"Groq ({data['model']}) minutes generation successful for session {session_id}")
return response.json()["choices"][0]["message"]["content"]
else:
logging.warning(f"Invalid model selection: {model_name}")
return "Error: Invalid model selection"
except requests.exceptions.Timeout:
logging.error(f"API Request Timeout for {model_name} on session {session_id}")
return f"Error: Request to {model_name} API timed out."
except requests.exceptions.RequestException as e:
logging.error(f"API Request Error for {model_name}: {e}")
if model_name == 'grok' and e.response is not None:
if e.response.status_code == 429:
logging.warning(f"Groq Rate Limit hit for session {session_id}")
return "Error: Groq API rate limit exceeded. Please try again later."
elif e.response.status_code == 404:
logging.error(f"Model {data['model']} not found via Groq API. Status: {e.response.status_code}. Response: {e.response.text}")
return f"Error: Model '{data['model']}' not found or accessible via Groq API. Please check model availability."
elif e.response.status_code >= 400:
logging.error(f"Groq API error. Status: {e.response.status_code}. Response: {e.response.text}")
return f"Error communicating with Groq API: {e.response.status_code}"
return f"Error communicating with {model_name} API: {e}"
except (genai.types.generation_types.BlockedPromptException, genai.types.generation_types.StopCandidateException) as e:
logging.error(f"Gemini content generation issue for session {session_id}: {e}")
return f"Error: Gemini generation failed or was blocked. {e}"
except Exception as e:
logging.error(f"Error generating minutes with {model_name} for session {session_id}: {e}", exc_info=True)
if model_name == 'anthropic' and 'Could not find model' in str(e):
return f"Error: Anthropic model '{response.model if 'response' in locals() else 'claude-3-5-haiku-20241022'}' not found or accessible. Check model name and API key permissions."
elif model_name == 'gemini' and 'model not found' in str(e).lower():
return f"Error: Gemini model '{model.model_name if 'model' in locals() else 'gemini-1.5-flash-latest'}' not found or accessible. Check model name and API key permissions."
return f"Error generating minutes using {model_name}: An unexpected error occurred."
def diarize_transcript_ai(transcript, model_name, session_id):
logging.info(f"Generating diarized transcript using {model_name} for session {session_id}")
if not transcript or "Error:" in transcript:
return "Error: Cannot diarize invalid or missing transcript."
diarization_prompt = (
"Analyze the given transcript to identify distinct speakers without labeled identifiers. "
"Create unique speaker embeddings based on individual speech patterns, vocabulary choices, and linguistic styles. "
"Examine the context and content of each utterance to detect likely speaker changes. "
"Recognize typical conversation structures and turn-taking behaviors to differentiate between speakers. "
"Finally, use topic modeling to identify shifts in subject matter and areas of expertise, associating certain topics with specific speakers. "
"Based on this analysis, assign speaker labels (e.g., Speaker 1, Speaker 2) to each utterance in the transcript."
"\n\nTranscript:\n" + transcript
)
with session_locks[session_id]:
try:
if model_name == 'openai':
if not openai.api_key: return "Error: OpenAI API key not configured."
client = openai.OpenAI()
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a professional assistant skilled in speaker diarization and transcript formatting."},
{"role": "user", "content": diarization_prompt}
],
timeout=120
)
logging.info(f"OpenAI diarization successful for session {session_id}")
return response.choices[0].message.content
elif model_name == 'gemini':
if not genai: return "Error: Google Gemini API not configured or key missing."
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content(
diarization_prompt,
request_options={'timeout': 120}
)
logging.info(f"Gemini diarization successful for session {session_id}")
if response.parts:
return response.text
else:
logging.warning(f"Gemini diarization response blocked or empty for session {session_id}. Reason: {response.prompt_feedback}")
return f"Error: Gemini response blocked or empty. Reason: {response.prompt_feedback}"
elif model_name == 'anthropic':
if not anthropic: return "Error: Anthropic API not configured or key missing."
response = anthropic.messages.create(
model="claude-3-5-haiku-20241022",
max_tokens=2000,
messages=[
{
"role": "user",
"content": diarization_prompt
}
],
timeout=120
)
logging.info(f"Anthropic diarization successful for session {session_id}")
if response.content and isinstance(response.content, list) and hasattr(response.content[0], 'text'):
return response.content[0].text
else:
logging.error(f"Could not extract content from Anthropic diarization response: {response}")
return "Error: Could not extract content from Anthropic response."
elif model_name == 'grok':
if not grok_api_key: return "Error: Grok API key (via Groq) not configured."
groq_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {grok_api_key}",
"Content-Type": "application/json"
}
data = {
"model": "grok-3-mini-fast-beta",
"messages": [
{"role": "system", "content": "You are a professional assistant skilled in speaker diarization and transcript formatting."},
{"role": "user", "content": diarization_prompt}
],
"max_tokens": 2000,
"temperature": 0.7
}
response = requests.post(groq_url, headers=headers, json=data, timeout=120)
response.raise_for_status()
logging.info(f"Groq ({data['model']}) diarization successful for session {session_id}")
return response.json()["choices"][0]["message"]["content"]
else:
logging.warning(f"Invalid model selection for diarization: {model_name}")
return "Error: Invalid model selection"
except Exception as e:
logging.error(f"Error during diarization with {model_name} for session {session_id}: {e}", exc_info=True)
return f"Error generating diarized transcript using {model_name}: An unexpected error occurred."
def save_to_word(content, filename):
try:
doc = docx.Document()
doc.add_paragraph(content)
doc.save(filename)
logging.info(f"Saved content to Word document: {filename}")
return filename
except Exception as e:
logging.error(f"Error saving to Word document {filename}: {e}")
return None
ALLOWED_AUDIO_EXTENSIONS = ['.mp3', '.wav', '.m4a', '.webm', '.mp4', '.mpeg', '.mpga']
ALLOWED_VIDEO_EXTENSIONS = ['.mp4', '.mov', '.avi', '.webm', '.mkv', '.flv']
ALLOWED_UPLOAD_EXTENSIONS = ALLOWED_AUDIO_EXTENSIONS + ALLOWED_VIDEO_EXTENSIONS
app.layout = dbc.Container([
dcc.Store(id='session-id', storage_type='local'),
dcc.Store(id='session-state-trigger'),
dcc.Download(id="download-transcript"),
dcc.Download(id="download-audio"),
dcc.Download(id="download-minutes"),
dcc.Download(id="download-diarized"),
dbc.Row([
dbc.Col(dbc.Card(
dbc.CardBody([
html.H4("Controls", className="card-title"),
html.Div("Upload meeting audio or video file:"),
dcc.Upload(
id='audio-uploader',
children=html.Div([
'Drag and Drop or ',
html.A('Select Audio/Video File')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px 0'
},
multiple=False,
accept='audio/*,video/*'
),
html.Div(id='upload-status', children='Status: Ready to Upload', className="mt-2"),
html.H5("Select AI Model", className="mt-4"),
dcc.Dropdown(
id='model-selection',
options=[
{'label': 'OpenAI GPT-3.5 Turbo', 'value': 'openai', 'disabled': not openai.api_key},
{'label': 'Google Gemini 1.5 Flash', 'value': 'gemini', 'disabled': not genai},
{'label': 'Anthropic Claude 3.5 Haiku', 'value': 'anthropic', 'disabled': not anthropic},
{'label': 'Grok 3 Mini', 'value': 'grok', 'disabled': not grok_api_key}
],
value='openai' if openai.api_key else ('gemini' if genai else ('anthropic' if anthropic else ('grok' if grok_api_key else None))),
clearable=False,
className="mt-2",
disabled=not (openai.api_key or genai or anthropic or grok_api_key)
),
dbc.Button("Generate Minutes", id="minutes-btn", color="secondary", className="mt-4 w-100", disabled=True),
dbc.Button("Diarize Transcript", id="diarize-btn", color="secondary", className="mt-2 w-100", disabled=True),
html.H5("Downloads", className="mt-4"),
dbc.Button("Download Transcript (.docx)", id="download-transcript-btn", color="info", className="w-100 mb-2", disabled=True),
dbc.Button("Download Minutes (.docx)", id="download-minutes-btn", color="info", className="w-100 mb-2", disabled=True),
dbc.Button("Download Processed Audio", id="download-audio-btn", color="info", className="w-100 mb-2", disabled=True),
dbc.Button("Download Diarized Transcript (.docx)", id="download-diarized-btn", color="info", className="w-100 mb-2", disabled=True),
dbc.Button("Delete Session Data", id="delete-btn", color="warning", className="mt-4 w-100", disabled=True),
]),
style={'height': '80vh', 'overflow-y': 'auto'}
), width=12, lg=4),
dbc.Col(dbc.Card(
dbc.CardBody([
dcc.Loading(
id="loading",
type="default",
parent_style={'position': 'relative', 'height': '100%'},
style={'position': 'absolute', 'top': '50%', 'left': '50%', 'transform': 'translate(-50%, -50%)', 'zIndex':'1000'},
children=[
html.Div([
html.H4("Output", className="card-title"),
html.Div(id="status", children="Status: Idle", className="mb-2"),
html.H5("Transcript / Minutes / Diarization"),
html.Div(id="transcript-preview", style={
"height": "400px",
"overflow-y": "scroll",
"border": "1px solid #ccc",
"padding": "10px",
"white-space": "pre-wrap",
"word-wrap": "break-word",
"background-color": "#f9f9f9"
}),
])
]
),
html.Div(id="loading-output", style={"height": "0px", "visibility": "hidden"}),
]),
style={'height': '80vh', 'overflow-y': 'auto', 'position': 'relative'}
), width=12, lg=8),
])
], fluid=True)
@app.callback(
Output('session-id', 'data'),
Input('session-id', 'data'),
prevent_initial_call=False
)
def manage_session_id(existing_session_id):
session_cookie = flask.request.cookies.get('dash-session-id')
ctx = dash.callback_context
final_session_id = None
source = "none"
if existing_session_id and not ctx.triggered:
final_session_id = existing_session_id
source = "store (initial)"
elif existing_session_id and session_cookie == existing_session_id:
final_session_id = existing_session_id
source = "store/cookie match"
elif session_cookie:
final_session_id = session_cookie
source = "cookie"
else:
final_session_id = str(uuid.uuid4())
source = "new generation"
if final_session_id not in session_data:
logging.info(f"Initializing server-side session for ID: {final_session_id} (Source: {source})")
get_session_dir(final_session_id)
logging.info(f"Manage Session ID - Final ID: {final_session_id}, Source: {source}, Store Input: {existing_session_id}, Cookie Input: {session_cookie}")
response = dash.callback_context.response
if source == "new generation" or (session_cookie != final_session_id):
logging.info(f"Setting session cookie for ID: {final_session_id}")
response.set_cookie('dash-session-id', final_session_id, max_age=60*60*24*7)
return final_session_id
@app.callback(
[
Output("status", "children"),
Output("transcript-preview", "children"),
Output("minutes-btn", "disabled"),
Output("diarize-btn", "disabled"),
Output("download-transcript-btn", "disabled"),
Output("download-minutes-btn", "disabled"),
Output("download-audio-btn", "disabled"),
Output("download-diarized-btn", "disabled"),
Output("delete-btn", "disabled"),
Output("loading-output", "children"),
Output("upload-status", "children")
],
[
Input('audio-uploader', 'contents'),
Input("minutes-btn", "n_clicks"),
Input("diarize-btn", "n_clicks"),
Input("delete-btn", "n_clicks")
],
[
State("session-id", "data"),
State("model-selection", "value"),
State("transcript-preview", "children"),
State('audio-uploader', 'filename')
],
prevent_initial_call=True
)
def handle_actions(upload_contents, minutes_clicks, diarize_clicks, delete_clicks, session_id, selected_model, existing_preview, filename):
if not session_id:
logging.warning("Session ID missing in handle_actions.")
return "Status: Error - Session ID missing", "", True, True, True, True, True, True, True, None, "Status: Error"
ctx = dash.callback_context
triggered_id = ctx.triggered_id if hasattr(ctx, 'triggered_id') else (ctx.triggered[0]['prop_id'].split('.')[0] if ctx.triggered else None)
current_transcript = session_data[session_id].get("transcript", "")
current_minutes = session_data[session_id].get("minutes", "")
current_diarized = session_data[session_id].get("diarized", "")
current_audio_path = session_data[session_id].get("audio_path", None)
original_filename = session_data[session_id].get("original_filename", None)
output_text = ""
# Prioritize showing diarized > minutes > transcript
if current_diarized and "Error:" not in current_diarized:
output_text = current_diarized
elif current_minutes and "Error:" not in current_minutes:
output_text = current_minutes
elif current_transcript and "Error:" not in current_transcript:
output_text = current_transcript
else:
output_text = "Upload an audio or video file to begin."
status_msg = "Status: Idle"
if current_diarized and "Error:" not in current_diarized:
status_msg = "Status: Session restored. Diarized transcript loaded."
elif current_minutes and "Error:" not in current_minutes:
status_msg = "Status: Session restored. Minutes loaded."
elif current_transcript and "Error:" not in current_transcript:
status_msg = "Status: Session restored. Transcript loaded. Ready for Minutes Generation."
elif current_audio_path and os.path.exists(current_audio_path):
status_msg = f"Status: Session restored. Processed audio loaded ({os.path.basename(original_filename if original_filename else 'file')}). Ready for transcription/minutes."
elif original_filename:
status_msg = f"Status: Session restored. Previous upload ({original_filename}) might have had issues."
minutes_disabled = not bool(current_transcript and "Error:" not in current_transcript)
diarize_disabled = not bool(current_transcript and "Error:" not in current_transcript)
dl_transcript_disabled = not bool(current_transcript and "Error:" not in current_transcript)
dl_minutes_disabled = not bool(current_minutes and "Error:" not in current_minutes)
dl_audio_disabled = not bool(current_audio_path and os.path.exists(current_audio_path))
dl_diarized_disabled = not bool(current_diarized and "Error:" not in current_diarized)
delete_disabled = not bool(session_data.get(session_id, {}).get("temp_dir"))
loading_output = None
upload_status_msg = f"Status: {'Loaded: ' + original_filename if original_filename else 'Ready to Upload'}"
start_time = time.time()
if triggered_id == 'audio-uploader' and upload_contents is not None and filename is not None:
logging.info(f"File uploaded for session {session_id}, filename: {filename}")
session_data[session_id]["original_filename"] = filename
upload_status_msg = f"Status: Processing Uploaded File ({filename})..."
status_msg = "Status: Processing Upload..."
loading_output = "Processing Upload..."
session_dir = get_session_dir(session_id)
_, f_ext = os.path.splitext(filename)
f_ext_lower = f_ext.lower()
if f_ext_lower not in ALLOWED_UPLOAD_EXTENSIONS:
status_msg = f"Status: Error - Invalid file type ({f_ext}). Please upload audio or video."
output_text = f"Error: Invalid file type ({f_ext}). Allowed types: {', '.join(ALLOWED_UPLOAD_EXTENSIONS)}"
upload_status_msg = f"Status: Invalid File Type ({filename})"
session_data[session_id]["audio_path"] = None
session_data[session_id]["transcript"] = None
session_data[session_id]["minutes"] = None
session_data[session_id]["diarized"] = None
session_data[session_id]["original_filename"] = None
minutes_disabled = True
diarize_disabled = True
dl_transcript_disabled = True
dl_minutes_disabled = True
dl_diarized_disabled = True
dl_audio_disabled = True
delete_disabled = False
return status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, None, upload_status_msg
safe_upload_filename = f"uploaded_file{f_ext}"
upload_file_path = os.path.join(session_dir, safe_upload_filename)
saved_upload_path = save_base64_data(upload_contents, upload_file_path)
if saved_upload_path:
audio_path_for_transcription = None
is_video = f_ext_lower in ALLOWED_VIDEO_EXTENSIONS
if is_video:
status_msg = "Status: Extracting audio from video..."
upload_status_msg = "Status: Extracting Audio..."
loading_output = "Extracting Audio..."
extracted_audio_filename = os.path.join(session_dir, f"extracted_audio_{uuid.uuid4()}.mp3")
extracted_audio_path = extract_audio_from_video(saved_upload_path, extracted_audio_filename)
if extracted_audio_path:
audio_path_for_transcription = extracted_audio_path
session_data[session_id]["audio_path"] = extracted_audio_path
dl_audio_disabled = False
try:
os.remove(saved_upload_path)
logging.info(f"Removed original video file: {saved_upload_path}")
except Exception as e:
logging.warning(f"Could not remove original video file {saved_upload_path}: {e}")
else:
status_msg = "Status: Error - Failed to extract audio from video."
output_text = "Error: Failed to extract audio from video file. Check if the file is valid."
upload_status_msg = f"Status: Error Extracting Audio ({filename})"
session_data[session_id]["audio_path"] = None
minutes_disabled = True
diarize_disabled = True
dl_transcript_disabled = True
dl_minutes_disabled = True
dl_diarized_disabled = True
dl_audio_disabled = True
delete_disabled = False
return status_msg, output_text, minutes_disabled, diarize_disabled, dl_transcript_disabled, dl_minutes_disabled, dl_audio_disabled, dl_diarized_disabled, delete_disabled, None, upload_status_msg
else:
audio_path_for_transcription = saved_upload_path
session_data[session_id]["audio_path"] = saved_upload_path
dl_audio_disabled = False
if audio_path_for_transcription:
logging.info(f"Audio path set for session {session_id}: {audio_path_for_transcription}. Starting transcription.")
status_msg = "Status: Transcribing..."
upload_status_msg = f"Status: Transcribing ({filename})..."
loading_output = "Transcribing..."
transcript_text = transcribe_audio(audio_path_for_transcription)
session_data[session_id]["transcript"] = transcript_text
session_data[session_id]["minutes"] = None
session_data[session_id]["diarized"] = None
if "Error:" in transcript_text:
status_msg = f"Status: Transcription Failed - {transcript_text}"
output_text = transcript_text
minutes_disabled = True
diarize_disabled = True
dl_transcript_disabled = True
dl_minutes_disabled = True
dl_diarized_disabled = True
delete_disabled = False
upload_status_msg = f"Status: Transcription Failed. ({filename})"
else:
status_msg = "Status: Transcription Complete. Ready for Minutes/Diarization."
output_text = transcript_text
minutes_disabled = False
diarize_disabled = False
dl_transcript_disabled = False
dl_minutes_disabled = True
dl_diarized_disabled = True
delete_disabled = False
upload_status_msg = f"Status: Processed & Transcribed: {filename}"
processing_time = time.time() - start_time
logging.info(f"File processing and transcription took {processing_time:.2f} seconds for session {session_id}")
else:
status_msg = "Status: Error - Failed to save uploaded file data."
output_text = "Failed to save uploaded file data."
upload_status_msg = "Status: Error Saving Upload"
session_data[session_id]["audio_path"] = None
session_data[session_id]["original_filename"] = None
minutes_disabled = True
diarize_disabled = True
dl_transcript_disabled = True
dl_minutes_disabled = True
dl_diarized_disabled = True
dl_audio_disabled = True
delete_disabled = False
elif triggered_id == "minutes-btn" and minutes_clicks:
logging.info(f"Generate Minutes button clicked for session {session_id}")
current_transcript = session_data[session_id].get("transcript", "")
if current_transcript and "Error:" not in current_transcript:
status_msg = f"Status: Generating Minutes ({selected_model})..."
loading_output = "Generating Minutes..."
minutes_text = generate_minutes_ai(current_transcript, selected_model, session_id)
session_data[session_id]["minutes"] = minutes_text
# Always set output_text to minutes_text unless diarized is present and valid
if session_data[session_id].get("diarized") and "Error:" not in session_data[session_id]["diarized"]:
output_text = session_data[session_id]["diarized"]
else:
output_text = minutes_text
if "Error:" in minutes_text:
status_msg = f"Status: Minutes Generation Failed - {minutes_text}"
else:
status_msg = "Status: Minutes Generation Complete."
processing_time = time.time() - start_time
logging.info(f"Minutes generation took {processing_time:.2f} seconds for session {session_id}")
minutes_disabled = False
diarize_disabled = False
dl_transcript_disabled = False
dl_audio_disabled = not bool(session_data.get(session_id, {}).get("audio_path") and os.path.exists(session_data.get(session_id, {}).get("audio_path", "")))
dl_minutes_disabled = not (minutes_text and "Error:" not in minutes_text)
dl_diarized_disabled = not (session_data[session_id].get("diarized") and "Error:" not in session_data[session_id].get("diarized"))
delete_disabled = False
upload_status_msg = f"Status: Processed & Transcribed: {session_data[session_id].get('original_filename', 'File')}"
else:
status_msg = "Status: Cannot generate minutes - No valid transcript available."
output_text = existing_preview
minutes_disabled = True
elif triggered_id == "diarize-btn" and diarize_clicks:
logging.info(f"Diarize button clicked for session {session_id}")
current_transcript = session_data[session_id].get("transcript", "")
if current_transcript and "Error:" not in current_transcript:
status_msg = f"Status: Diarizing Transcript ({selected_model})..."
loading_output = "Diarizing Transcript..."
diarized_text = diarize_transcript_ai(current_transcript, selected_model, session_id)
session_data[session_id]["diarized"] = diarized_text
if "Error:" in diarized_text:
status_msg = f"Status: Diarization Failed - {diarized_text}"
else:
status_msg = "Status: Diarization Complete."
output_text = diarized_text
minutes_disabled = False
diarize_disabled = False
dl_transcript_disabled = False
dl_audio_disabled = not bool(session_data.get(session_id, {}).get("audio_path") and os.path.exists(session_data.get(session_id, {}).get("audio_path", "")))
dl_minutes_disabled = not (session_data[session_id].get("minutes") and "Error:" not in session_data[session_id].get("minutes"))
dl_diarized_disabled = not (diarized_text and "Error:" not in diarized_text)
delete_disabled = False
upload_status_msg = f"Status: Processed & Transcribed: {session_data[session_id].get('original_filename', 'File')}"
else:
status_msg = "Status: Cannot diarize - No valid transcript available."
output_text = existing_preview
diarize_disabled = True
elif triggered_id == "delete-btn" and delete_clicks:
logging.info(f"Delete button clicked for session {session_id}")
cleanup_session(session_id)
status_msg = "Status: All session data deleted."
output_text = "Session data cleared. Upload a new file."
minutes_disabled = True
diarize_disabled = True
dl_transcript_disabled = True
dl_minutes_disabled = True
dl_diarized_disabled = True
dl_audio_disabled = True
delete_disabled = True
upload_status_msg = "Status: Ready to Upload"
else:
loaded_audio_path = session_data.get(session_id, {}).get("audio_path")
loaded_transcript = session_data.get(session_id, {}).get("transcript")
loaded_minutes = session_data.get(session_id, {}).get("minutes")
loaded_diarized = session_data.get(session_id, {}).get("diarized")
temp_dir_exists = bool(session_data.get(session_id, {}).get("temp_dir"))
loaded_original_filename = session_data.get(session_id, {}).get("original_filename")
dl_audio_disabled = not (loaded_audio_path and os.path.exists(loaded_audio_path))
minutes_disabled = not (loaded_transcript and "Error:" not in loaded_transcript)
diarize_disabled = not (loaded_transcript and "Error:" not in loaded_transcript)
dl_transcript_disabled = not (loaded_transcript and "Error:" not in loaded_transcript)
dl_minutes_disabled = not (loaded_minutes and "Error:" not in loaded_minutes)
dl_diarized_disabled = not (loaded_diarized and "Error:" not in loaded_diarized)
delete_disabled = not (loaded_audio_path or loaded_transcript or loaded_minutes or loaded_diarized or temp_dir_exists or loaded_original_filename)
# Output priority: diarized > minutes > transcript
if loaded_diarized and "Error:" not in loaded_diarized:
output_text = loaded_diarized
elif loaded_minutes and "Error:" not in loaded_minutes:
output_text = loaded_minutes
elif loaded_transcript and "Error:" not in loaded_transcript:
output_text = loaded_transcript
else:
output_text = "Upload an audio or video file to begin."
if loaded_original_filename and dl_audio_disabled and not loaded_transcript:
upload_status_msg = f"Status: Error processing {loaded_original_filename}?"
elif loaded_audio_path and os.path.exists(loaded_audio_path):
upload_status_msg = f"Status: Processed audio loaded ({loaded_original_filename or 'previous file'})."
else:
upload_status_msg = "Status: Ready to Upload"
return (
status_msg,
output_text,
minutes_disabled,
diarize_disabled,
dl_transcript_disabled,
dl_minutes_disabled,
dl_audio_disabled,
dl_diarized_disabled,
delete_disabled,
loading_output,
upload_status_msg
)
@app.callback(
Output("download-transcript", "data"),
Input("download-transcript-btn", "n_clicks"),
State("session-id", "data"),
prevent_initial_call=True,
)
def download_transcript_file(n_clicks, session_id):
if not session_id or not session_data.get(session_id, {}).get("transcript"):
logging.warning(f"Download transcript requested but no data found for session {session_id}.")
return None
transcript = session_data[session_id]["transcript"]
if "Error:" in transcript:
logging.warning(f"Attempted to download transcript containing an error for session {session_id}.")
return None
session_dir = get_session_dir(session_id)
transcript_filename = os.path.join(session_dir, f"transcript_{uuid.uuid4()}.docx")
saved_doc_path = save_to_word(transcript, transcript_filename)
if saved_doc_path:
logging.info(f"Sending transcript file: {saved_doc_path}")
original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0]
download_filename = f"{original_filename_base}_transcript.docx"
return dcc.send_file(saved_doc_path, filename=download_filename)
else:
logging.error(f"Failed to create Word document for transcript download for session {session_id}")
return dcc.send_data_frame(lambda: transcript, "meeting_transcript.txt")
@app.callback(
Output("download-minutes", "data"),
Input("download-minutes-btn", "n_clicks"),
State("session-id", "data"),
prevent_initial_call=True,
)
def download_minutes_file(n_clicks, session_id):
if not session_id or not session_data.get(session_id, {}).get("minutes"):
logging.warning(f"Download minutes requested but no data found for session {session_id}.")
return None
minutes = session_data[session_id]["minutes"]
if "Error:" in minutes:
logging.warning(f"Attempted to download minutes containing an error for session {session_id}.")
return None
session_dir = get_session_dir(session_id)
minutes_filename = os.path.join(session_dir, f"meeting_minutes_{uuid.uuid4()}.docx")
saved_doc_path = save_to_word(minutes, minutes_filename)
if saved_doc_path:
logging.info(f"Sending minutes file: {saved_doc_path}")
original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0]
download_filename = f"{original_filename_base}_minutes.docx"
return dcc.send_file(saved_doc_path, filename=download_filename)
else:
logging.error(f"Failed to create Word document for minutes download for session {session_id}")
return dcc.send_data_frame(lambda: minutes, "meeting_minutes.txt")
@app.callback(
Output("download-audio", "data"),
Input("download-audio-btn", "n_clicks"),
State("session-id", "data"),
prevent_initial_call=True,
)
def download_audio_file(n_clicks, session_id):
if not session_id or not session_data.get(session_id, {}).get("audio_path"):
logging.warning(f"Download audio requested but no processed audio path found for session {session_id}.")
return None
audio_path = session_data[session_id]["audio_path"]
original_filename = session_data[session_id].get("original_filename", "meeting_audio")
if os.path.exists(audio_path):
logging.info(f"Sending processed audio file: {audio_path}")
original_filename_base = os.path.splitext(original_filename)[0]
_, current_ext = os.path.splitext(audio_path)
download_filename = f"{original_filename_base}_processed_audio{current_ext}"
return dcc.send_file(audio_path, filename=download_filename)
else:
logging.error(f"Processed audio file not found at path {audio_path} for session {session_id}")
return None
@app.callback(
Output("download-diarized", "data"),
Input("download-diarized-btn", "n_clicks"),
State("session-id", "data"),
prevent_initial_call=True,
)
def download_diarized_file(n_clicks, session_id):
if not session_id or not session_data.get(session_id, {}).get("diarized"):
logging.warning(f"Download diarized transcript requested but no data found for session {session_id}.")
return None
diarized = session_data[session_id]["diarized"]
if "Error:" in diarized:
logging.warning(f"Attempted to download diarized transcript containing an error for session {session_id}.")
return None
session_dir = get_session_dir(session_id)
diarized_filename = os.path.join(session_dir, f"diarized_{uuid.uuid4()}.docx")
saved_doc_path = save_to_word(diarized, diarized_filename)
if saved_doc_path:
logging.info(f"Sending diarized transcript file: {saved_doc_path}")
original_filename_base = os.path.splitext(session_data[session_id].get("original_filename", "meeting"))[0]
download_filename = f"{original_filename_base}_diarized.docx"
return dcc.send_file(saved_doc_path, filename=download_filename)
else:
logging.error(f"Failed to create Word document for diarized transcript download for session {session_id}")
return dcc.send_data_frame(lambda: diarized, "meeting_diarized.txt")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=False, host='0.0.0.0', port=7860)
print("Dash application has finished running.")