Spaces:
Paused
Paused
File size: 18,450 Bytes
c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 034b23e c887bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import dash
from dash import dcc, html, Input, Output, State, callback_context, no_update
import dash_bootstrap_components as dbc
import logging
import threading
import os
import base64
import io
import uuid
import time
from flask import Flask
import requests
ALLOWED_EXTENSIONS = ('pdf', 'doc', 'docx', 'txt')
logging.basicConfig(
format="%(asctime)s %(levelname)s:%(message)s",
level=logging.INFO
)
logger = logging.getLogger(__name__)
uploaded_documents = {}
generated_content = {}
ANTHROPIC_API_URL = "https://api.anthropic.com/v1/messages"
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY", "YOUR_ANTHROPIC_API_KEY")
server = Flask(__name__)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
external_stylesheets = [dbc.themes.BOOTSTRAP]
app = dash.Dash(
__name__,
server=server,
external_stylesheets=external_stylesheets,
suppress_callback_exceptions=True,
title="Proposal Writing Assistant"
)
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def save_uploaded_file(file_content, filename):
doc_id = str(uuid.uuid4())
uploaded_documents[doc_id] = {
"filename": filename,
"content": file_content
}
logger.info(f"Uploaded document saved: {filename} with id {doc_id}")
return doc_id
def anthropic_api_call(prompt, files=None, task_type=None, extra_instructions=""):
logger.info(f"Calling Anthropic API for task: {task_type}")
headers = {
"x-api-key": ANTHROPIC_API_KEY,
"content-type": "application/json"
}
data = {
"model": "claude-3-opus-20240229",
"messages": [
{"role": "user", "content": prompt + "\n" + extra_instructions}
],
"max_tokens": 4096,
"temperature": 0.2
}
try:
# response = requests.post(ANTHROPIC_API_URL, headers=headers, json=data, timeout=120)
# result = response.json().get('content', ['[Anthropic response placeholder]'])[0]
time.sleep(2)
result = f"[Simulated response for {task_type}]"
logger.info(f"Anthropic API success for task: {task_type}")
return result
except Exception as e:
logger.error(f"Anthropic API error: {str(e)}")
return f"Error: {str(e)}"
def parse_contents(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if filename.lower().endswith('.txt'):
preview = decoded.decode('utf-8')[:2048]
else:
preview = f"Preview not available for {filename}"
return preview
except Exception as e:
logger.error(f"Could not decode file {filename}: {e}")
return f"Error decoding {filename}"
def navbar():
return dbc.Card(
[
dbc.Nav(
[
dbc.Button("Shred RFP/PWS/SOW/RFI", id="btn-shred", className="mb-2 btn-primary", style={"width": "100%"}),
dbc.Button("Generate Proposal Response", id="btn-generate", className="mb-2 btn-secondary", style={"width": "100%"}),
dbc.Button("Check Compliance", id="btn-compliance", className="mb-2 btn-tertiary", style={"width": "100%"}),
dbc.Button("Recover Document", id="btn-recover", className="mb-2 btn-primary", style={"width": "100%"}),
dbc.Button("Virtual Board", id="btn-virtual-board", className="mb-2 btn-secondary", style={"width": "100%"}),
dbc.Button("Estimate LOE", id="btn-loe", className="mb-2 btn-tertiary", style={"width": "100%"}),
],
vertical=True,
pills=False
),
html.Hr(),
html.Div(
[
html.H6("Uploaded Documents"),
html.Ul(
id="uploaded-doc-list",
style={"listStyleType": "none", "paddingLeft": "0"}
),
]
),
],
body=True
)
def chat_window():
return dbc.Card(
[
html.Div(
[
html.Div(id="chat-history", style={"height": "160px", "overflowY": "auto", "padding": "0.5rem"}),
dbc.InputGroup(
[
dbc.Textarea(id="chat-input", placeholder="Send additional instructions...", style={"resize":"vertical", "wordWrap":"break-word", "width": "100%", "height": "60px"}),
dbc.Button("Send", id="btn-send-chat", className="btn-secondary", n_clicks=0),
],
className="mt-2"
),
]
),
],
body=True,
style={"marginBottom": "10px"}
)
def top_action_buttons():
return html.Div(
[
dbc.Button("Shred", id="action-shred", className="me-2 btn-primary", n_clicks=0, style={"minWidth": "120px"}),
dbc.Button("Generate Response", id="action-generate", className="me-2 btn-secondary", n_clicks=0, style={"minWidth": "180px"}),
dbc.Button("Check Compliance", id="action-compliance", className="me-2 btn-tertiary", n_clicks=0, style={"minWidth": "160px"}),
dbc.Button("Recover", id="action-recover", className="me-2 btn-primary", n_clicks=0, style={"minWidth": "120px"}),
dbc.Button("Virtual Board", id="action-virtual-board", className="me-2 btn-secondary", n_clicks=0, style={"minWidth": "160px"}),
dbc.Button("Estimate LOE", id="action-loe", className="btn-tertiary", n_clicks=0, style={"minWidth": "140px"}),
],
className="mb-3",
style={"display": "flex", "flexWrap": "wrap"}
)
def upload_area():
return html.Div(
[
dcc.Upload(
id="upload-document",
children=html.Div(["Drag & drop or click to select a file."]),
multiple=False,
style={
"width": "100%",
"height": "70px",
"lineHeight": "70px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "4px",
"textAlign": "center",
"marginBottom": "8px"
}
),
html.Div(id="upload-feedback")
]
)
def preview_area():
return dbc.Card(
[
html.H6("Document Preview / Output"),
html.Pre(id="preview-content", style={"whiteSpace": "pre-wrap", "wordWrap": "break-word", "maxHeight": "340px", "overflowY": "auto"})
],
body=True
)
def main_layout():
return dbc.Container(
[
dbc.Row(
[
dbc.Col(
html.H2("Proposal Writing Assistant", style={"margin": "12px 0"}),
width=12
),
],
align="center",
style={"marginBottom": "8px"}
),
dbc.Row(
[
dbc.Col(
navbar(),
width=3,
style={"minWidth": "220px", "maxWidth": "400px"}
),
dbc.Col(
dbc.Card(
[
chat_window(),
top_action_buttons(),
upload_area(),
preview_area(),
dcc.Loading(
id="loading",
type="default",
children=html.Div(id="loading-output"),
style={"position": "absolute", "top": "6px", "left": "50%"}
),
],
body=True
),
width=9
),
],
style={"minHeight": "90vh"}
),
],
fluid=True
)
app.layout = main_layout
@app.callback(
Output("uploaded-doc-list", "children"),
Output("preview-content", "children"),
Output("upload-feedback", "children"),
Output("loading-output", "children"),
Output("chat-history", "children"),
[
Input("upload-document", "contents"),
Input("action-shred", "n_clicks"),
Input("action-generate", "n_clicks"),
Input("action-compliance", "n_clicks"),
Input("action-recover", "n_clicks"),
Input("action-virtual-board", "n_clicks"),
Input("action-loe", "n_clicks"),
Input("btn-send-chat", "n_clicks"),
Input({"type": "delete-doc-btn", "index": dash.ALL}, "n_clicks"),
],
[
State("upload-document", "filename"),
State("chat-input", "value"),
State("chat-history", "children"),
State("preview-content", "children"),
State("uploaded-doc-list", "children"),
],
prevent_initial_call=True
)
def main_callback(
upload_contents, shred, generate, compliance, recover, virtual_board, loe, send_chat, delete_doc_clicks,
upload_filename, chat_input, chat_history, preview_content, uploaded_doc_list
):
triggered_id = callback_context.triggered[0]["prop_id"].split(".")[0] if callback_context.triggered else None
logger.info(f"Triggered callback: {triggered_id}")
feedback = no_update
loading_message = ""
new_preview_content = no_update
new_chat_history = chat_history if chat_history else []
doc_list_items = []
if triggered_id == "upload-document" and upload_contents and upload_filename:
if not allowed_file(upload_filename):
feedback = dbc.Alert("Unsupported file type. Please upload PDF, Word, or TXT.", color="danger", dismissable=True)
else:
doc_id = save_uploaded_file(upload_contents, upload_filename)
preview = parse_contents(upload_contents, upload_filename)
new_preview_content = f"{upload_filename}:\n\n{preview}"
feedback = dbc.Alert(f"Uploaded {upload_filename}", color="success", dismissable=True)
logger.info(f"File uploaded: {upload_filename}")
for doc_id, doc in uploaded_documents.items():
doc_list_items.append(
html.Li(
[
html.Span(doc['filename'], style={"marginRight": "8px"}),
dbc.Button("Delete", id={"type": "delete-doc-btn", "index": doc_id}, color="danger", size="sm", n_clicks=0)
],
style={"display": "flex", "justifyContent": "space-between", "alignItems": "center", "marginBottom": "5px"}
)
)
if isinstance(delete_doc_clicks, list) and any(delete_doc_clicks):
idx = delete_doc_clicks.index(max(delete_doc_clicks))
doc_ids = list(uploaded_documents.keys())
if idx < len(doc_ids):
deleted_doc = uploaded_documents.pop(doc_ids[idx])
feedback = dbc.Alert(f"Deleted {deleted_doc['filename']}", color="info", dismissable=True)
logger.info(f"Document deleted: {deleted_doc['filename']}")
doc_list_items = [
html.Li(
[
html.Span(doc['filename'], style={"marginRight": "8px"}),
dbc.Button("Delete", id={"type": "delete-doc-btn", "index": doc_id}, color="danger", size="sm", n_clicks=0)
],
style={"display": "flex", "justifyContent": "space-between", "alignItems": "center", "marginBottom": "5px"}
)
for doc_id, doc in uploaded_documents.items()
]
new_preview_content = "" if not uploaded_documents else no_update
if len(uploaded_documents) == 0 and triggered_id not in ["upload-document", "btn-send-chat"]:
feedback = dbc.Alert("Please upload a document before performing actions.", color="warning", dismissable=True)
logger.warning("Attempted action without documents.")
return doc_list_items, new_preview_content, feedback, loading_message, new_chat_history
if triggered_id == "btn-send-chat" and chat_input and chat_input.strip():
if not isinstance(new_chat_history, list):
new_chat_history = []
new_chat_history.append(html.Div([
html.Strong("You: "), html.Span(chat_input)
], style={"marginBottom": "0.25rem"}))
feedback = dbc.Alert("Chat message sent. Instructions will be used in next action.", color="info", dismissable=True)
logger.info(f"Chat message sent: {chat_input}")
last_chat = ""
if isinstance(new_chat_history, list) and new_chat_history:
for item in reversed(new_chat_history):
if isinstance(item, html.Div):
children = item.children
if len(children) > 1 and isinstance(children[1], html.Span):
last_chat = children[1].children
break
elif isinstance(chat_input, str):
last_chat = chat_input
if triggered_id in ["action-shred", "action-generate", "action-compliance", "action-recover", "action-virtual-board", "action-loe"]:
loading_message = dbc.Alert("Processing request, please wait...", color="primary", dismissable=False, style={"textAlign": "center"})
doc_id, doc = next(iter(uploaded_documents.items()))
file_name = doc['filename']
file_content = doc['content']
action_type = triggered_id.replace("action-", "").replace("-", " ").title()
# DECODE the document content for use in the prompt
try:
content_type, content_string = file_content.split(',')
decoded = base64.b64decode(content_string)
if file_name.lower().endswith('.txt'):
document_text = decoded.decode('utf-8', errors='replace')
else:
document_text = f"[Start of document {file_name} as base64]\n{decoded[:350].hex()}...[truncated]\n[End of document]"
except Exception as e:
logger.error(f"Could not decode document {file_name} for Anthropic: {e}")
document_text = f"[Could not decode {file_name}]"
logger.info(f"Sending document content of length {len(document_text)} to Anthropic for {action_type}")
result_holder = {}
def threaded_api_call():
if triggered_id == "action-shred":
prompt = (
"Shred this document into requirements, organized by section. "
"Identify requirements by action words (shall, will, perform, etc). "
"Output as spreadsheet: PWS Section, Requirement.\n\n"
f"Document Content:\n{document_text}\n"
)
task_type = "Shred"
elif triggered_id == "action-generate":
prompt = (
"Generate a detailed proposal response, organized by section/subsection. "
"Focus on approach, steps, workflow, people, processes, technology. "
"Include research validation and citations. Address Red Review findings.\n\n"
f"Document Content:\n{document_text}\n"
)
task_type = "Generate Proposal Response"
elif triggered_id == "action-compliance":
prompt = (
"Check compliance of the proposal response against the shredded requirements. "
"Produce a spreadsheet: PWS number, requirement, finding, recommendation.\n\n"
f"Proposal Response Document Content:\n{document_text}\n"
)
task_type = "Check Compliance"
elif triggered_id == "action-recover":
prompt = (
"Using the compliance spreadsheet, improve the document sections. "
"Address recommendations without materially changing content. "
"Organize improvements by PWS section headers/subheaders.\n\n"
f"Document Content:\n{document_text}\n"
)
task_type = "Recover Document"
elif triggered_id == "action-virtual-board":
prompt = (
"Evaluate the proposal based on requirements and evaluation criteria. "
"Generate a section-by-section evaluation spreadsheet using ratings: "
"unsatisfactory, satisfactory, good, very good, excellent. Include explanations. "
"Base evaluation on sections L and M.\n\n"
f"Document Content:\n{document_text}\n"
)
task_type = "Virtual Board"
elif triggered_id == "action-loe":
prompt = (
"Estimate Level of Effort for the proposal. Output spreadsheet: "
"PWS task area, brief description, labor categories, estimated hours per category.\n\n"
f"Document Content:\n{document_text}\n"
)
task_type = "Estimate LOE"
else:
prompt = ""
task_type = "Unknown"
logger.info(f"Prompt to Anthropic for {action_type}: {prompt[:400]}...[truncated]")
result_holder["result"] = anthropic_api_call(prompt, files=[file_content], task_type=task_type, extra_instructions=last_chat or "")
thread = threading.Thread(target=threaded_api_call)
thread.start()
thread.join()
result = result_holder.get("result", "[No result]")
generated_content[triggered_id] = result
new_preview_content = f"{action_type} Output for {file_name}:\n\n{result}"
feedback = dbc.Alert(f"{action_type} completed.", color="success", dismissable=True)
logger.info(f"{action_type} completed for {file_name}")
return doc_list_items, new_preview_content, feedback, loading_message, new_chat_history
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860, threaded=True)
print("Dash application has finished running.") |