Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,58 @@
|
|
1 |
import os
|
2 |
-
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
3 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
4 |
-
|
5 |
-
import io
|
6 |
import torch
|
7 |
from fastapi import FastAPI, File, UploadFile
|
8 |
from fastapi.responses import JSONResponse, HTMLResponse
|
9 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
10 |
from PIL import Image
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
13 |
processor = AutoImageProcessor.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
|
14 |
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
|
15 |
|
16 |
-
# FastAPI app
|
17 |
app = FastAPI()
|
18 |
|
19 |
@app.get("/", response_class=HTMLResponse)
|
20 |
async def home():
|
21 |
-
return
|
22 |
<html>
|
23 |
<body>
|
24 |
-
<h2>Upload
|
25 |
<form action="/predict" enctype="multipart/form-data" method="post">
|
26 |
<input name="file" type="file" accept="image/*">
|
27 |
<input type="submit" value="Upload">
|
28 |
</form>
|
29 |
</body>
|
30 |
</html>
|
31 |
-
|
32 |
|
33 |
@app.post("/predict")
|
34 |
async def predict(file: UploadFile = File(...)):
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
result = {labels[i]: float(probs[i]) for i in range(len(labels))}
|
44 |
|
45 |
-
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from fastapi import FastAPI, File, UploadFile
|
4 |
from fastapi.responses import JSONResponse, HTMLResponse
|
5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
6 |
from PIL import Image
|
7 |
|
8 |
+
# Set Hugging Face cache to avoid permission issues
|
9 |
+
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
10 |
+
|
11 |
+
# Load processor + model
|
12 |
processor = AutoImageProcessor.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
|
13 |
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
|
14 |
|
15 |
+
# Create FastAPI app
|
16 |
app = FastAPI()
|
17 |
|
18 |
@app.get("/", response_class=HTMLResponse)
|
19 |
async def home():
|
20 |
+
return """
|
21 |
<html>
|
22 |
<body>
|
23 |
+
<h2>Upload Image for Gender Detection</h2>
|
24 |
<form action="/predict" enctype="multipart/form-data" method="post">
|
25 |
<input name="file" type="file" accept="image/*">
|
26 |
<input type="submit" value="Upload">
|
27 |
</form>
|
28 |
</body>
|
29 |
</html>
|
30 |
+
"""
|
31 |
|
32 |
@app.post("/predict")
|
33 |
async def predict(file: UploadFile = File(...)):
|
34 |
+
try:
|
35 |
+
# Load image
|
36 |
+
image = Image.open(file.file).convert("RGB")
|
37 |
+
|
38 |
+
# Preprocess
|
39 |
+
inputs = processor(images=image, return_tensors="pt")
|
40 |
+
|
41 |
+
# Predict
|
42 |
+
with torch.no_grad():
|
43 |
+
outputs = model(**inputs)
|
44 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].cpu().numpy()
|
45 |
+
|
46 |
+
# Get labels (ensure consistent order)
|
47 |
+
labels = list(model.config.id2label.values())
|
48 |
|
49 |
+
# Fix keys: return "male" and "female" only
|
50 |
+
result = {
|
51 |
+
"female": float(probs[labels.index("female portrait")]),
|
52 |
+
"male": float(probs[labels.index("male portrait")])
|
53 |
+
}
|
54 |
|
55 |
+
return JSONResponse(content=result)
|
|
|
56 |
|
57 |
+
except Exception as e:
|
58 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|