Midnightar commited on
Commit
d0f8a9c
·
verified ·
1 Parent(s): 089d560

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
4
+ from PIL import Image
5
+
6
+ # Load model + processor (auto cached inside Spaces)
7
+ processor = AutoImageProcessor.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
8
+ model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Realistic-Gender-Classification")
9
+
10
+ def predict(image):
11
+ # Preprocess
12
+ inputs = processor(images=image, return_tensors="pt")
13
+ with torch.no_grad():
14
+ outputs = model(**inputs)
15
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0].cpu().numpy()
16
+
17
+ # Labels
18
+ labels = list(model.config.id2label.values())
19
+
20
+ # Clean dict for FlutterFlow
21
+ result = {
22
+ "female": float(probs[labels.index("female portrait")]),
23
+ "male": float(probs[labels.index("male portrait")])
24
+ }
25
+ return result
26
+
27
+ # Gradio interface (Spaces auto-hosts this)
28
+ demo = gr.Interface(
29
+ fn=predict,
30
+ inputs=gr.Image(type="pil"),
31
+ outputs=gr.JSON()
32
+ )
33
+
34
+ if __name__ == "__main__":
35
+ demo.launch()