Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def respond(
|
| 11 |
message,
|
|
@@ -25,19 +28,24 @@ def respond(
|
|
| 25 |
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
"""
|
| 43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
@@ -58,6 +66,5 @@ demo = gr.ChatInterface(
|
|
| 58 |
],
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
| 62 |
if __name__ == "__main__":
|
| 63 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import os
|
| 4 |
|
| 5 |
+
# Define the repository ID and access token
|
| 6 |
+
repo_id = "Mikhil-jivus/Llama-32-3B-FineTuned"
|
| 7 |
+
access_token = os.getenv('HF_TOKEN')
|
|
|
|
| 8 |
|
| 9 |
+
# Load the tokenizer and model from the Hugging Face repository
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id, use_auth_token=access_token)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(repo_id, use_auth_token=access_token)
|
| 12 |
|
| 13 |
def respond(
|
| 14 |
message,
|
|
|
|
| 28 |
|
| 29 |
messages.append({"role": "user", "content": message})
|
| 30 |
|
| 31 |
+
# Tokenize the input messages
|
| 32 |
+
input_text = system_message + " ".join([f"{msg['role']}: {msg['content']}" for msg in messages])
|
| 33 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 34 |
|
| 35 |
+
# Generate a response
|
| 36 |
+
chat_history_ids = model.generate(
|
| 37 |
+
input_ids,
|
| 38 |
+
max_length=max_tokens,
|
| 39 |
temperature=temperature,
|
| 40 |
top_p=top_p,
|
| 41 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 42 |
+
do_sample=True,
|
| 43 |
+
)
|
| 44 |
|
| 45 |
+
# Decode the response
|
| 46 |
+
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 47 |
+
|
| 48 |
+
yield response
|
| 49 |
|
| 50 |
"""
|
| 51 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
|
| 66 |
],
|
| 67 |
)
|
| 68 |
|
|
|
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.launch()
|