Spaces:
Build error
Build error
Pietro Lesci
commited on
Commit
·
c700823
1
Parent(s):
51cab9d
enhanced UI
Browse files- src/pages/home.py +64 -61
- src/preprocessing.py +74 -63
src/pages/home.py
CHANGED
|
@@ -1,13 +1,7 @@
|
|
| 1 |
from src.configs import Languages
|
| 2 |
-
from src.utils import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
TextPreprocessor,
|
| 6 |
-
plot_labels_prop,
|
| 7 |
-
plot_nchars,
|
| 8 |
-
plot_score,
|
| 9 |
-
read_file,
|
| 10 |
-
)
|
| 11 |
from src.wordifier import wordifier
|
| 12 |
import streamlit as st
|
| 13 |
|
|
@@ -36,7 +30,7 @@ def write(session, uploaded_file):
|
|
| 36 |
|
| 37 |
elif uploaded_file:
|
| 38 |
|
| 39 |
-
# 1. READ FILE
|
| 40 |
with st.spinner("Reading file"):
|
| 41 |
# TODO: write parser function that automatically understands format
|
| 42 |
data = read_file(uploaded_file)
|
|
@@ -47,15 +41,13 @@ def write(session, uploaded_file):
|
|
| 47 |
language = st.selectbox("Select language", [i.name for i in Languages])
|
| 48 |
with st.beta_expander("Description"):
|
| 49 |
st.markdown(
|
| 50 |
-
f"Select a language
|
| 51 |
)
|
| 52 |
with col2:
|
| 53 |
cols_options = [""] + data.columns.tolist()
|
| 54 |
-
label_column = st.selectbox(
|
| 55 |
-
"Select label column name", cols_options, index=0
|
| 56 |
-
)
|
| 57 |
with st.beta_expander("Description"):
|
| 58 |
-
st.markdown("Select the column containing the
|
| 59 |
|
| 60 |
if label_column:
|
| 61 |
plot = plot_labels_prop(data, label_column)
|
|
@@ -65,90 +57,103 @@ def write(session, uploaded_file):
|
|
| 65 |
with col3:
|
| 66 |
text_column = st.selectbox("Select text column name", cols_options, index=0)
|
| 67 |
with st.beta_expander("Description"):
|
| 68 |
-
st.markdown("Select the column containing the
|
| 69 |
|
| 70 |
if text_column:
|
| 71 |
-
st.altair_chart(
|
| 72 |
-
plot_nchars(data, text_column), use_container_width=True
|
| 73 |
-
)
|
| 74 |
|
|
|
|
| 75 |
with st.beta_expander("Advanced options"):
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
col1, col2 = st.beta_columns([1, 3])
|
| 78 |
with col1:
|
| 79 |
-
|
| 80 |
with col2:
|
| 81 |
-
st.
|
| 82 |
|
| 83 |
-
#
|
| 84 |
col1, col2 = st.beta_columns([1, 3])
|
| 85 |
with col1:
|
| 86 |
-
|
| 87 |
with col2:
|
| 88 |
-
st.
|
| 89 |
|
| 90 |
-
# cleaning steps
|
|
|
|
| 91 |
col1, col2 = st.beta_columns([1, 3])
|
| 92 |
with col1:
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
with col2:
|
| 96 |
-
st.
|
|
|
|
|
|
|
| 97 |
|
| 98 |
# implement reset logic
|
| 99 |
if reset_button.button("Reset steps"):
|
| 100 |
session.run_id += 1
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
"Select text processing steps (ordered)",
|
| 105 |
options=steps_options,
|
| 106 |
-
default=steps_options,
|
| 107 |
format_func=lambda x: x.replace("_", " ").title(),
|
| 108 |
key=session.run_id,
|
| 109 |
)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
options=lemmatization_options,
|
| 116 |
-
index=0,
|
| 117 |
key=session.run_id,
|
| 118 |
)
|
| 119 |
remove_stopwords = remove_stopwords_elem.checkbox(
|
| 120 |
-
"Remove stopwords",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
)
|
| 122 |
|
| 123 |
-
#
|
| 124 |
col1, col2 = st.beta_columns([1, 2])
|
| 125 |
with col1:
|
| 126 |
show_sample = st.checkbox("Show sample of preprocessed text")
|
| 127 |
|
| 128 |
# initialize text preprocessor
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
|
| 136 |
-
# 3. PROVIDE FEEDBACK ON OPTIONS
|
| 137 |
if show_sample and not (label_column and text_column):
|
| 138 |
st.warning("Please select `label` and `text` columns")
|
| 139 |
|
| 140 |
elif show_sample and (label_column and text_column):
|
| 141 |
-
sample_data = data.sample(
|
| 142 |
-
sample_data[f"preprocessed_{text_column}"] =
|
| 143 |
sample_data[text_column]
|
| 144 |
).values
|
| 145 |
-
st.table(
|
| 146 |
-
sample_data.loc[
|
| 147 |
-
:, [label_column, text_column, f"preprocessed_{text_column}"]
|
| 148 |
-
]
|
| 149 |
-
)
|
| 150 |
|
| 151 |
-
# 4. RUN
|
| 152 |
run_button = st.button("Wordify!")
|
| 153 |
if run_button and not (label_column and text_column):
|
| 154 |
st.warning("Please select `label` and `text` columns")
|
|
@@ -157,7 +162,7 @@ def write(session, uploaded_file):
|
|
| 157 |
|
| 158 |
with st.spinner("Process started"):
|
| 159 |
# data = data.head()
|
| 160 |
-
data[f"preprocessed_{text_column}"] =
|
| 161 |
data[text_column]
|
| 162 |
).values
|
| 163 |
|
|
@@ -168,7 +173,7 @@ def write(session, uploaded_file):
|
|
| 168 |
# session.posdf, session.negdf = process(data, text_column, label_column)
|
| 169 |
session.process = True
|
| 170 |
|
| 171 |
-
# 5. RESULTS
|
| 172 |
if session.process and (label_column and text_column):
|
| 173 |
st.markdown("")
|
| 174 |
st.markdown("")
|
|
@@ -178,9 +183,7 @@ def write(session, uploaded_file):
|
|
| 178 |
col1, col2, col3 = st.beta_columns([2, 3, 3])
|
| 179 |
|
| 180 |
with col1:
|
| 181 |
-
label = st.selectbox(
|
| 182 |
-
"Select label", data[label_column].unique().tolist()
|
| 183 |
-
)
|
| 184 |
# # with col2:
|
| 185 |
# thres = st.slider(
|
| 186 |
# "Select threshold",
|
|
|
|
| 1 |
from src.configs import Languages
|
| 2 |
+
from src.utils import read_file, download_button
|
| 3 |
+
from src.plotting import plot_labels_prop, plot_nchars, plot_score
|
| 4 |
+
from src.preprocessing import Lemmatizer, PreprocessingPipeline, encode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from src.wordifier import wordifier
|
| 6 |
import streamlit as st
|
| 7 |
|
|
|
|
| 30 |
|
| 31 |
elif uploaded_file:
|
| 32 |
|
| 33 |
+
# ==== 1. READ FILE ==== #
|
| 34 |
with st.spinner("Reading file"):
|
| 35 |
# TODO: write parser function that automatically understands format
|
| 36 |
data = read_file(uploaded_file)
|
|
|
|
| 41 |
language = st.selectbox("Select language", [i.name for i in Languages])
|
| 42 |
with st.beta_expander("Description"):
|
| 43 |
st.markdown(
|
| 44 |
+
f"Select a language amongst those supported: {', '.join([f'`{i.name}`' for i in Languages])}. This will be used to lemmatize and remove stopwords."
|
| 45 |
)
|
| 46 |
with col2:
|
| 47 |
cols_options = [""] + data.columns.tolist()
|
| 48 |
+
label_column = st.selectbox("Select label column name", cols_options, index=0)
|
|
|
|
|
|
|
| 49 |
with st.beta_expander("Description"):
|
| 50 |
+
st.markdown("Select the column containing the labels.")
|
| 51 |
|
| 52 |
if label_column:
|
| 53 |
plot = plot_labels_prop(data, label_column)
|
|
|
|
| 57 |
with col3:
|
| 58 |
text_column = st.selectbox("Select text column name", cols_options, index=0)
|
| 59 |
with st.beta_expander("Description"):
|
| 60 |
+
st.markdown("Select the column containing the texts.")
|
| 61 |
|
| 62 |
if text_column:
|
| 63 |
+
st.altair_chart(plot_nchars(data, text_column), use_container_width=True)
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# ==== 2.1 CREATE UI FOR ADVANCED OPTIONS ==== #
|
| 66 |
with st.beta_expander("Advanced options"):
|
| 67 |
+
|
| 68 |
+
steps_options = list(PreprocessingPipeline.pipeline_components().keys())
|
| 69 |
+
|
| 70 |
+
# stopwords option and
|
| 71 |
col1, col2 = st.beta_columns([1, 3])
|
| 72 |
with col1:
|
| 73 |
+
st.markdown("Remove stopwords (uses Spacy vocabulary)")
|
| 74 |
with col2:
|
| 75 |
+
remove_stopwords_elem = st.empty()
|
| 76 |
|
| 77 |
+
# lemmatization option
|
| 78 |
col1, col2 = st.beta_columns([1, 3])
|
| 79 |
with col1:
|
| 80 |
+
st.markdown("Lemmatizes text (uses Spacy)")
|
| 81 |
with col2:
|
| 82 |
+
lemmatization_elem = st.empty()
|
| 83 |
|
| 84 |
+
# pre-lemmatization cleaning steps and
|
| 85 |
+
# post-lemmatization cleaning steps
|
| 86 |
col1, col2 = st.beta_columns([1, 3])
|
| 87 |
with col1:
|
| 88 |
+
st.markdown(
|
| 89 |
+
f"""
|
| 90 |
+
Define a pipeline of cleaning steps that is applied before and/or after lemmatization.
|
| 91 |
+
The available cleaning steps are:\n
|
| 92 |
+
{", ".join([f"`{x.replace('_', ' ').title()}`" for x in steps_options])}
|
| 93 |
+
"""
|
| 94 |
+
)
|
| 95 |
with col2:
|
| 96 |
+
pre_steps_elem = st.empty()
|
| 97 |
+
post_steps_elem = st.empty()
|
| 98 |
+
reset_button = st.empty()
|
| 99 |
|
| 100 |
# implement reset logic
|
| 101 |
if reset_button.button("Reset steps"):
|
| 102 |
session.run_id += 1
|
| 103 |
|
| 104 |
+
pre_steps = pre_steps_elem.multiselect(
|
| 105 |
+
"Select pre-lemmatization preprocessing steps (ordered)",
|
|
|
|
| 106 |
options=steps_options,
|
| 107 |
+
default=steps_options[1:],
|
| 108 |
format_func=lambda x: x.replace("_", " ").title(),
|
| 109 |
key=session.run_id,
|
| 110 |
)
|
| 111 |
+
post_steps = post_steps_elem.multiselect(
|
| 112 |
+
"Select post-lemmatization processing steps (ordered)",
|
| 113 |
+
options=steps_options,
|
| 114 |
+
default=steps_options[-4:],
|
| 115 |
+
format_func=lambda x: x.replace("_", " ").title(),
|
|
|
|
|
|
|
| 116 |
key=session.run_id,
|
| 117 |
)
|
| 118 |
remove_stopwords = remove_stopwords_elem.checkbox(
|
| 119 |
+
"Remove stopwords",
|
| 120 |
+
value=True,
|
| 121 |
+
key=session.run_id,
|
| 122 |
+
)
|
| 123 |
+
lemmatization = lemmatization_elem.checkbox(
|
| 124 |
+
"Lemmatize text",
|
| 125 |
+
value=True,
|
| 126 |
+
key=session.run_id,
|
| 127 |
)
|
| 128 |
|
| 129 |
+
# show sample checkbox
|
| 130 |
col1, col2 = st.beta_columns([1, 2])
|
| 131 |
with col1:
|
| 132 |
show_sample = st.checkbox("Show sample of preprocessed text")
|
| 133 |
|
| 134 |
# initialize text preprocessor
|
| 135 |
+
preprocessing_pipeline = PreprocessingPipeline(
|
| 136 |
+
pre_steps=pre_steps,
|
| 137 |
+
lemmatizer=Lemmatizer(
|
| 138 |
+
language=language,
|
| 139 |
+
remove_stop=remove_stopwords,
|
| 140 |
+
lemmatization=lemmatization,
|
| 141 |
+
),
|
| 142 |
+
post_steps=post_steps,
|
| 143 |
)
|
| 144 |
|
| 145 |
+
# ==== 3. PROVIDE FEEDBACK ON OPTIONS ==== #
|
| 146 |
if show_sample and not (label_column and text_column):
|
| 147 |
st.warning("Please select `label` and `text` columns")
|
| 148 |
|
| 149 |
elif show_sample and (label_column and text_column):
|
| 150 |
+
sample_data = data.sample(5)
|
| 151 |
+
sample_data[f"preprocessed_{text_column}"] = preprocessing_pipeline(
|
| 152 |
sample_data[text_column]
|
| 153 |
).values
|
| 154 |
+
st.table(sample_data.loc[:, [label_column, text_column, f"preprocessed_{text_column}"]])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
# ==== 4. RUN ==== #
|
| 157 |
run_button = st.button("Wordify!")
|
| 158 |
if run_button and not (label_column and text_column):
|
| 159 |
st.warning("Please select `label` and `text` columns")
|
|
|
|
| 162 |
|
| 163 |
with st.spinner("Process started"):
|
| 164 |
# data = data.head()
|
| 165 |
+
data[f"preprocessed_{text_column}"] = preprocessing_pipeline(
|
| 166 |
data[text_column]
|
| 167 |
).values
|
| 168 |
|
|
|
|
| 173 |
# session.posdf, session.negdf = process(data, text_column, label_column)
|
| 174 |
session.process = True
|
| 175 |
|
| 176 |
+
# ==== 5. RESULTS ==== #
|
| 177 |
if session.process and (label_column and text_column):
|
| 178 |
st.markdown("")
|
| 179 |
st.markdown("")
|
|
|
|
| 183 |
col1, col2, col3 = st.beta_columns([2, 3, 3])
|
| 184 |
|
| 185 |
with col1:
|
| 186 |
+
label = st.selectbox("Select label", data[label_column].unique().tolist())
|
|
|
|
|
|
|
| 187 |
# # with col2:
|
| 188 |
# thres = st.slider(
|
| 189 |
# "Select threshold",
|
src/preprocessing.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import re
|
| 2 |
import string
|
| 3 |
from collections import OrderedDict
|
| 4 |
-
from typing import Callable,
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
|
@@ -86,75 +86,102 @@ def normalize_repeating_words(t):
|
|
| 86 |
|
| 87 |
return _re_wrep.sub(_replace_wrep, t)
|
| 88 |
|
|
|
|
| 89 |
# fmt: on
|
| 90 |
-
class
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
cleaning_steps: List[str],
|
| 95 |
-
lemmatizer_when: str = "last",
|
| 96 |
-
remove_stop: bool = True,
|
| 97 |
-
) -> None:
|
| 98 |
-
|
| 99 |
-
# prepare lemmatizer
|
| 100 |
self.language = language
|
| 101 |
self.nlp = spacy.load(
|
| 102 |
Languages[language].value, exclude=["parser", "ner", "pos", "tok2vec"]
|
| 103 |
)
|
| 104 |
-
self.
|
| 105 |
-
self.
|
| 106 |
-
self._lemmatize = self._get_lemmatizer()
|
| 107 |
-
|
| 108 |
-
# prepare cleaning
|
| 109 |
-
self.cleaning_steps = [
|
| 110 |
-
self._cleaning_options()[step]
|
| 111 |
-
for step in cleaning_steps
|
| 112 |
-
if step in self._cleaning_options()
|
| 113 |
-
]
|
| 114 |
-
self.cleaning_pipeline = (
|
| 115 |
-
make_pipeline(*self.cleaning_steps) if self.cleaning_steps else lambda x: x
|
| 116 |
-
)
|
| 117 |
|
| 118 |
-
def
|
| 119 |
"""Return the correct spacy Doc-level lemmatizer"""
|
| 120 |
-
if
|
| 121 |
|
| 122 |
-
def
|
| 123 |
-
""
|
| 124 |
-
return " ".join(
|
| 125 |
-
[t.lemma_ for t in doc if t.lemma_ != "-PRON-" and not t.is_stop]
|
| 126 |
-
)
|
| 127 |
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
def
|
| 131 |
-
"""Lemmatizes spacy Doc"""
|
| 132 |
return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-"])
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
"Before preprocessing": "first",
|
| 140 |
-
"After preprocessing": "last",
|
| 141 |
-
"Never! Let's do it quick and dirty": None,
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
def lemmatizer(self, series: pd.Series) -> pd.Series:
|
| 145 |
"""
|
| 146 |
Apply spacy pipeline to transform string to spacy Doc and applies lemmatization
|
| 147 |
"""
|
| 148 |
res = []
|
| 149 |
-
pbar = stqdm(total=len(series))
|
| 150 |
for doc in self.nlp.pipe(series, batch_size=500):
|
| 151 |
-
res.append(self.
|
| 152 |
pbar.update(1)
|
| 153 |
pbar.close()
|
| 154 |
return pd.Series(res)
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
@staticmethod
|
| 157 |
-
def
|
| 158 |
"""Returns available cleaning steps in order"""
|
| 159 |
return OrderedDict(
|
| 160 |
[
|
|
@@ -184,19 +211,3 @@ class TextPreprocessor:
|
|
| 184 |
("strip", lambda x: x.strip()),
|
| 185 |
]
|
| 186 |
)
|
| 187 |
-
|
| 188 |
-
def fit_transform(self, series: pd.Series) -> Series:
|
| 189 |
-
"""Applies text preprocessing"""
|
| 190 |
-
|
| 191 |
-
if self.lemmatizer_when == "first":
|
| 192 |
-
with st.spinner("Lemmatizing"):
|
| 193 |
-
series = self.lemmatizer(series)
|
| 194 |
-
|
| 195 |
-
with st.spinner("Cleaning"):
|
| 196 |
-
series = series.progress_map(self.cleaning_pipeline)
|
| 197 |
-
|
| 198 |
-
if self.lemmatizer_when == "last":
|
| 199 |
-
with st.spinner("Lemmatizing"):
|
| 200 |
-
series = self.lemmatizer(series)
|
| 201 |
-
|
| 202 |
-
return series
|
|
|
|
| 1 |
import re
|
| 2 |
import string
|
| 3 |
from collections import OrderedDict
|
| 4 |
+
from typing import Callable, List, Optional, Tuple
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
|
|
|
| 86 |
|
| 87 |
return _re_wrep.sub(_replace_wrep, t)
|
| 88 |
|
| 89 |
+
|
| 90 |
# fmt: on
|
| 91 |
+
class Lemmatizer:
|
| 92 |
+
"""Creates lemmatizer based on spacy"""
|
| 93 |
+
|
| 94 |
+
def __init__(self, language: str, remove_stop: bool = True, lemmatization: bool = True) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
self.language = language
|
| 96 |
self.nlp = spacy.load(
|
| 97 |
Languages[language].value, exclude=["parser", "ner", "pos", "tok2vec"]
|
| 98 |
)
|
| 99 |
+
self._lemmatizer_fn = self._get_lemmatization_fn(remove_stop, lemmatization)
|
| 100 |
+
self.lemmatization = lemmatization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
def _get_lemmatization_fn(self, remove_stop: bool, lemmatization: bool) -> Optional[Callable]:
|
| 103 |
"""Return the correct spacy Doc-level lemmatizer"""
|
| 104 |
+
if remove_stop and lemmatization:
|
| 105 |
|
| 106 |
+
def lemmatizer_fn(doc: spacy.tokens.doc.Doc) -> str:
|
| 107 |
+
return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-" and not t.is_stop])
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
elif remove_stop and not lemmatization:
|
| 110 |
+
|
| 111 |
+
def lemmatizer_fn(doc: spacy.tokens.doc.Doc) -> str:
|
| 112 |
+
return " ".join([t for t in doc if not t.is_stop])
|
| 113 |
+
|
| 114 |
+
elif lemmatization and not remove_stop:
|
| 115 |
|
| 116 |
+
def lemmatizer_fn(doc: spacy.tokens.doc.Doc) -> str:
|
|
|
|
| 117 |
return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-"])
|
| 118 |
|
| 119 |
+
else:
|
| 120 |
+
self.status = False
|
| 121 |
+
return
|
| 122 |
|
| 123 |
+
return lemmatizer_fn
|
| 124 |
+
|
| 125 |
+
def __call__(self, series: Series) -> Series:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
"""
|
| 127 |
Apply spacy pipeline to transform string to spacy Doc and applies lemmatization
|
| 128 |
"""
|
| 129 |
res = []
|
| 130 |
+
pbar = stqdm(total=len(series), desc="Lemmatizing")
|
| 131 |
for doc in self.nlp.pipe(series, batch_size=500):
|
| 132 |
+
res.append(self._lemmatizer_fn(doc))
|
| 133 |
pbar.update(1)
|
| 134 |
pbar.close()
|
| 135 |
return pd.Series(res)
|
| 136 |
|
| 137 |
+
|
| 138 |
+
class PreprocessingPipeline:
|
| 139 |
+
def __init__(self, pre_steps: List[str], lemmatizer: Lemmatizer, post_steps: List[str]):
|
| 140 |
+
|
| 141 |
+
# build pipeline
|
| 142 |
+
self.pre_pipeline, self.lemmatizer, self.post_pipeline = self.make_pipeline(
|
| 143 |
+
pre_steps, lemmatizer, post_steps
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
def __call__(self, series: Series) -> Series:
|
| 147 |
+
with st.spinner("Pre-lemmatization cleaning"):
|
| 148 |
+
res = series.progress_map(self.pre_pipeline)
|
| 149 |
+
|
| 150 |
+
with st.spinner("Lemmatizing"):
|
| 151 |
+
res = self.lemmatizer(series)
|
| 152 |
+
|
| 153 |
+
with st.spinner("Post-lemmatization cleaning"):
|
| 154 |
+
res = series.progress_map(self.post_pipeline)
|
| 155 |
+
|
| 156 |
+
return res
|
| 157 |
+
|
| 158 |
+
def make_pipeline(
|
| 159 |
+
self, pre_steps: List[str], lemmatizer: Lemmatizer, post_steps: List[str]
|
| 160 |
+
) -> Tuple[Callable]:
|
| 161 |
+
|
| 162 |
+
# pre-lemmatization steps
|
| 163 |
+
pre_steps = [
|
| 164 |
+
self.pipeline_components()[step]
|
| 165 |
+
for step in pre_steps
|
| 166 |
+
if step in self.pipeline_components()
|
| 167 |
+
]
|
| 168 |
+
pre_steps = make_pipeline(*pre_steps) if pre_steps else lambda x: x
|
| 169 |
+
|
| 170 |
+
# lemmatization
|
| 171 |
+
lemmatizer = lemmatizer if lemmatizer.lemmatization else lambda x: x
|
| 172 |
+
|
| 173 |
+
# post lemmatization steps
|
| 174 |
+
post_steps = [
|
| 175 |
+
self.pipeline_components()[step]
|
| 176 |
+
for step in post_steps
|
| 177 |
+
if step in self.pipeline_components()
|
| 178 |
+
]
|
| 179 |
+
post_steps = make_pipeline(*post_steps) if post_steps else lambda x: x
|
| 180 |
+
|
| 181 |
+
return pre_steps, lemmatizer, post_steps
|
| 182 |
+
|
| 183 |
@staticmethod
|
| 184 |
+
def pipeline_components() -> "OrderedDict[str, Callable]":
|
| 185 |
"""Returns available cleaning steps in order"""
|
| 186 |
return OrderedDict(
|
| 187 |
[
|
|
|
|
| 211 |
("strip", lambda x: x.strip()),
|
| 212 |
]
|
| 213 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|